OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9126–9144

Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery

Ruhul Amin, Jing Zhou, Alex Gilerson, Barry Gross, Fred Moshary, and Samir Ahmed  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9126-9144 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Karenia brevis (K. brevis) blooms are of great interest and have been commonly reported throughout the Gulf of Mexico. In this study we propose a detection technique for blooms with low backscatter characteristics, which we name the Red Band Difference (RBD) technique, coupled with a selective K. brevis bloom classification technique, which we name the K. brevis Bloom Index (KBBI). These techniques take advantage of the relatively high solar induced chlorophyll fluorescence and low backscattering of K. brevis blooms. The techniques are applied to the detection and classification of K. brevis blooms from Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color measurements off the Gulf of Mexico. To assess the efficacy of the techniques for detection and classification, simulations, including chlorophyll fluorescence (assuming 0.75% quantum yield) based on K. brevis blooms and non-K. brevis blooms conditions were performed. These show that effective bloom detection from satellite measurements requires a threshold of RBD>0.15W/m2/µm/sr, corresponding to about 5mg/m3 of chlorophyll. Blooms can be detected at lower concentration by lowering the RBD threshold but false positives may increase. The classification technique is found most effective for thresholds of RBD>0.15W/m2/µm/sr and KBBI>0.3*RBD. The techniques were applied and shown to be effective for well documented blooms of K. brevis in the Gulf of Mexico and compared to other detection techniques, including FLH approaches. Impacts of different atmospheric corrections on results were also examined.

© 2009 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 24, 2009
Revised Manuscript: May 7, 2009
Manuscript Accepted: May 12, 2009
Published: May 15, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Ruhul Amin, Jing Zhou, Alex Gilerson, Barry Gross, Fred Moshary, and Samir Ahmed, "Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery," Opt. Express 17, 9126-9144 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.floridaconservation.org/
  2. J. H. Landsberg, and K. A. Steidinger, “A historical review of Gymnodium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latiriostris) in Florida, USA,” in Proceedings of the 8th International Conference on Harmful Algal Blooms, Vigo, Spain, pp. 97–100, (1998), B. Reguera, J. Blanco, M. L. Fernandez, T. Wyatt, eds.
  3. W. H. Hemmert, “The public health implications of Gymnodinium breve red tides, A review of the literature and recent events” in Proceedings of the First International Conference on Toxic Dinoflagellate Blooms, pp. 489–497, (1975) V. R. LoCicero, ed.
  4. S. Asai, J. J. Krzanowski, W. H. Anderson, D. F. Martin, J. B. Polson, R. F. Lockey, S. C. Bukantz, and A. Szentivanyi, “Effects of the toxin of red tide, Ptychodiscus brevis, on cannie tracheal smooth muscle: a possible new asthma-triggering mechanism,” J. Allergy Clin. Immunol. 69(5), 418–428 (1982). [CrossRef] [PubMed]
  5. J. P. Cannizzaro, K. L. Carder, F. R. Chen, C. A. Heil, and G. A. Vargo, “A novel technique for detection of the toxic dinoflagellate Karenia brevis in the Gulf of Mexico from remotely sensed ocean color data,” Continent. Shel. Res. 28(1), 137–158 (2008). [CrossRef]
  6. K. L. Mahoney, “Backscattering of light by Karenia brevis and implications for optical detection and monitoring,” PhD dissertation, Univ. of South. Miss., Stennis Space Cent. (2003)
  7. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985). [CrossRef]
  8. O. Schofield, J. Kerfoot, K. Mahoney, M. Moline, M. Oliver, S. Lohrenz, and G. Kirkpatrick, “Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties,” J. Geophys. Res. 111(C6), C06009 (2006). [CrossRef]
  9. G. J. Kirkpatrick, D. F. Millie, M. A. Moline, and O. Schofield, “Optical discrimination of a phytoplankton species in natural mixed populations,” Limnol. Oceanogr. 45, 467–4718 (2000). [CrossRef]
  10. D. F. Millie, G. J. Kirkpatrick, and B. T. Vinyard, “Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate Gymnodinium breve,” Mar. Ecol. Prog. Ser. 120, 65–75 (1995). [CrossRef]
  11. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, “Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, Gymnodinium breve,” Limnol. Oceanogr. 42, 1240–1251 (1997). [CrossRef]
  12. S. E. Lohrenz, G. L. Fahnenstiel, G. J. Kirkpatrick, C. L. Carroll, and K. A. Kelly, “Microphotometric assessment of spectral absorption and its potential application for characterization of harmful algal species,” J. Phycol. 35(6), 1438–1446 (1999). [CrossRef]
  13. A. Morel and Y. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacteria and algal cells,” J. Mar. Res. 49(1), 177–202 (1991). [CrossRef]
  14. D. Stramski and D. A. Kiefer, “Light scattering in microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]
  15. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle-size distribution on the backscattering ratio in seawater,” Appl. Opt. 33(30), 7070–7077 (1994). [CrossRef] [PubMed]
  16. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001). [CrossRef]
  17. R. P. Stumpf, M. E. Culver, P. A. Tester, M. Tomlinson, G. J. Kirkpatrick, B. A. Pederson, E. Truby, V. Ransibrahmanakul, and M. Soracco, “Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data,” Harmful Algae 2, 147–160 (2003). [CrossRef]
  18. J. E. O’Reilly, S. Maritorena, D. Siegel, M. C. O’Brien, and D. Toole, B. G., Mitchell, et al., “Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4,” In: Hooker, S. B. & Firestone, E. R. (Eds.), SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3 SeaWiFS Postlaunch Technical Report Series, (pp. 9–23) Greenbelt, Maryland: NASA, Goddard Space Flight Center (2000)
  19. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22(1), 20–36 (1983). [CrossRef] [PubMed]
  20. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semi-analytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104(C3), 5403–5421 (1999). [CrossRef]
  21. C. Hu, F. E. Muller-Karger, C. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, “Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters,” Remote Sens. Environ. 97(3), 311–321 (2005). [CrossRef]
  22. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, R. Amin, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence contribution to reflelctance spectra for a variety of coastal waters,” Proc. SPIE 6680, (2007). [CrossRef]
  23. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15(24), 15702–15721 (2007). [CrossRef] [PubMed]
  24. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. II. Performance of retrieval algorithms,” Opt. Express 16(4), 2446–2460 (2008). [CrossRef] [PubMed]
  25. R. Amin, J. Zhou, A. Gilerson, B. Gross, F. Moshary, and S. Ahmed, “ Detection of Karenia brevis harmful algal blooms in the West Florida Shelf using red bands of MERIS Imagery,” OCEANS 08 MTS/IEEE Quebec, Canada, 15–18 Sept. (2008)
  26. http://oceancolor.gsfc.nasa.gov
  27. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994). [CrossRef] [PubMed]
  28. M. Wang and W. Shi, “Estimation of ocean contribution at MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:. [CrossRef]
  29. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37(27), 6329–6338 (1998). [CrossRef]
  30. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999). [CrossRef]
  31. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997). [CrossRef]
  32. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html
  33. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds., (Academic, New York, 1974)
  34. Z. P. Lee and K. L. Carder, “Band-ratio or spectral-curvature algorithms for satellite remote sensing?” Appl. Opt. 39(24), 4377–4380 (2000). [CrossRef]
  35. T. J. Smayda, “Harmful algal blooms: their ecophysology and general relevance to phytoplankton blooms in the sea,” Limnol. Oceanogr. 42, 1137–1153 (1997). [CrossRef]
  36. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001). [CrossRef]
  37. C. S. Roesler and E. Boss, “Spectral beam attenuation coefficient retrieved from ocean color inversion,” Geophys. Res. Lett. 30(9), 1468 (2003), doi:. [CrossRef]
  38. Y. Huot, C. A. Brown, and J. J. Cullen, “New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products,” Limnol. Oceanogr. Methods 3, 108–130 (2005). [CrossRef]
  39. J. Zhou, A. Gilerson, I. Ioannou, S. Hlaing, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Retrieving quantum yield of sun-induced chlorophyll fluorescence near surface from hyperspectral in-situ measurement in productive water,” Opt. Express 16(22), 17468–17483 (2008). [CrossRef] [PubMed]
  40. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  41. A. Albert and C. D. Mobely, “An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters,” Opt. Express 11, 2873–2890 (2003). [CrossRef] [PubMed]
  42. A. Morel and S. Maritorena, “Bio-optical properties of ocean waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001). [CrossRef]
  43. http://oceancolor.gsfc.nasa.gov/DOCS/MSL12/master_prodlist.html/#nLw
  44. J. J. Walsh, J. K. Jolliff, B. P. Darrow, J. M. Lenes, S. P. Milroy, A. Remsen, D. A. Dieterle, K. L. Carder, F. R. Chen, G. A. Vargo, R. H. Weisberg, K. A. Fanning, F. E. Muller-Karger, E. Shinn, K. A. Steidinger, C. A. Heil, C. R. Tomas, J. S. Prospero, T. N. Lee, G. J. Kirkpatrick, T. E. Whitledge, D. A. Stockwell, T. A. Villareal, A. E. Jochens, and P. S. Bontempi, “Red tides in the Gulf of Mexico: where, when, and why?” J. Geophys. Res. 111(C11), C11003 (2006). [CrossRef]
  45. K. L. Carder, J. P. Cannizzaro, F. R. Chen, and C. Hu, “ Detecting HAB’s in the Gulf of Mexico: Problems with atmospheric correction and shallow waters,” MODIS Science Team Meeting, (2005)
  46. FWRI, http://www.floridamarine.org
  47. R. Amin, A. Gilerson, J. Zhou, B. Gross, F. Moshary, and S. Ahmed, “ Impacts of atmospheric corrections on algal bloom detection techniques,” 89th AMS Annual Meeting, Phoenix, Arizona, 11–15 Jan, (2009)
  48. M. C. Tomlinson, R. P. Stumpf, V. Ransibrahmanakul, E. W. Truby, G. J. Kirkpatrick, B. A. Pederson, G. A. Vargo, and C. A. Heil, “Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico,” Remote Sens. Environ. 91(3-4), 293–303 (2004). [CrossRef]
  49. http://www.nasa.gov/centers/goddard/news/topstory/2004/0826planktonglow.html
  50. http://nasascience.nasa.gov/earth-science/applied-sciences/national-applications/coastal-managment
  51. http://coastwatch.noaa.gov/hab/bulletins_ns.htm
  52. C. Hu, F. E. Muller-Karger, and P. W. Swarzenski, “Hurricanes, submarine groundwater discharge, and Florida’s red tides,” Geophys. Res. Lett. 33(11), L11601 (2006), doi:. [CrossRef]
  53. http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/redtide/status.phtml
  54. A. Subramaniam, E. J. Carpenter, and P. G. Falkowski, “Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing,” Limnol. Oceanogr. 44, 618–627 (1999). [CrossRef]
  55. D. McKee, A. Cunningham, D. Wright, and L. Hay, “Potential impacts of nonalgal materials on water-leaving Sun induced chlorophyll fluorescence signals in coastal waters,” Appl. Opt. 46(31), 7720–7729 (2007). [CrossRef] [PubMed]
  56. M. C. Tomlinson, T. T. Wynne, and R. P. Stumpf, “An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis,” Remote Sens. Environ. (2008), doi:.
  57. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000). [CrossRef]
  58. C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000). [CrossRef]
  59. C. Hu, Z. P. Lee, F. E. Muller-Karger, and K. L. Carder, “Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters,” In J. Frouin, Y. Yuan, & H. Kawamura (Eds.) SPIE Proceedings. Ocean Remote Sensing and Applications, vol. 4892 (pp. 70–79). Bellingham, WA: SPIE, (2003)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited