OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9191–9196

Nanofocusing of radially polarized light with dielectric-metal-dielectric probe

Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 9191-9196 (2009)
http://dx.doi.org/10.1364/OE.17.009191


View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanofocusing properties of a tip in the form of a dielectric tapered fiber with metal apertureless coating and dielectric nanocladding can be tuned within a wide spectral range by choice of cladding permittivity. The silica core of diameter decreasing from 2 μm to 5 nm in apex is covered with a silver layer and has a 5 nm dielectric cladding. Internal illumination with a radially polarized Laguerre-Gauss beam guided in fiber is used. In body-of-revolution finite-difference time-domain simulations we find that with an increase of the refractive index of nanocladdings the maximum enhancement occurs for increasingly longer wavelengths.

© 2009 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 16, 2009
Revised Manuscript: April 17, 2009
Manuscript Accepted: April 29, 2009
Published: May 15, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik, "Nanofocusing of radially polarized light with dielectric-metal-dielectric probe," Opt. Express 17, 9191-9196 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  3. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge, Cambridge, 2007).
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution ?/20,” Appl. Phys. Lett. 44(7), 651–653 (1984). [CrossRef]
  5. T. J. Antosiewicz and T. Szoplik, “Description of near– and far–field light emitted from a metal–coated tapered fiber tip,” Opt. Express 15(12), 7845–7852 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 . [CrossRef] [PubMed]
  6. T. J. Antosiewicz and T. Szoplik, “Corrugated metal–coated tapered tip for scanning near–field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10920 . [CrossRef] [PubMed]
  7. T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008). [CrossRef]
  8. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  9. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-9-970 . [CrossRef] [PubMed]
  10. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyana, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785–3788 (2000). [CrossRef]
  11. W.-X. Sun and Z.-X. Shen, “Optimizing the near field around silver tips,” J. Opt. Soc. Am. A 20(12), 2254–2259 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2254 . [CrossRef]
  12. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003). [CrossRef] [PubMed]
  13. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005). [CrossRef]
  14. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver–coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007). [CrossRef]
  15. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007). [CrossRef]
  16. A. Downes, D. Salter, and A. Elfick, “Simulations of tip-enhanced optical microscopy reveal atomic resolution,” J. Microsc. 229(2), 184–188 (2008). [CrossRef] [PubMed]
  17. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008). [CrossRef]
  18. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4106 . [CrossRef] [PubMed]
  19. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009). [CrossRef]
  20. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005). [CrossRef]
  21. Y. Kozawa, K. Yonezawa, and S. Sato, “Radially polarized laser beam from a Nd:YAG laser cavity with z c-cut YVO4 crystal,” Appl. Phys. B 88(1), 43–46 (2007). [CrossRef]
  22. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009), http://www.opticsinfobase.org/aop/abstract.cfm?URI=aop-1-1-1 . [CrossRef]
  23. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  24. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  25. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-45 . [CrossRef] [PubMed]
  26. T. Grosjean, M. Suarez, and A. Sabac, “Generation of polychromatic radially and azimuthally polarized beams,” Appl. Phys. Lett. 93(23), 231106 (2008). [CrossRef]
  27. J. M. Khoshman and M. E. Kordesch, “Optical constants and band edge of amorphous zinc oxide thin films,” Thin Solid Films 515(18), 7393–7399 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited