OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9212–9218

Bragg reflection of terahertz waves in plasmonic crystals

Eui Su Lee, D.H. Kang, A.I. Fernandez-Dominguez, F.J. Garcia-Vidal, L. Martin-Moreno, D.S. Kim, and Tae-In Jeon  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9212-9218 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental and theoretical studies on terahertz surface plasmon (TSP) propagation on slit and rectangular aperture arrays in an aluminum sheet. Terahertz waves are coupled onto the plasmonic structures via a parallel plate waveguide. Long-lasting oscillations are observed in the temporal pulse shape after propagating through the periodic structure, whose Fourier transformation into the frequency domain results in Bragg-resonance spectral features. We show that the interference between the incident wave and the radiation reflected from both the aperture array and the waveguide block is responsible for this Bragg-resonance behavior. The reflection coefficient for a single slit is deduced to be 0.017 ± 0.002.

© 2009 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: March 6, 2009
Revised Manuscript: May 6, 2009
Manuscript Accepted: May 6, 2009
Published: May 15, 2009

Eui Su Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and Tae-In Jeon, "Bragg reflection of terahertz waves in plasmonic crystals," Opt. Express 17, 9212-9218 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sommerfeld, “Ueber die fortpflanzung elektrodynamischer wellen längs eines drahtes,” Ann. Phys. Chem. 303(2), 233–290 (1899). [CrossRef]
  2. J. Zenneck, “Fortplfanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche,” Ann. Phys. 23, 846–866 (1907). [CrossRef]
  3. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  5. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  6. J. G. Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003). [CrossRef]
  7. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004). [CrossRef]
  8. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S94 (2005). [CrossRef]
  10. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  11. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  12. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004). [CrossRef] [PubMed]
  13. J. A. Sánchez-Gil and J. Gómez Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006). [CrossRef]
  14. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006). [CrossRef]
  15. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]
  16. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006). [CrossRef]
  17. E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of Single-Mode and Multi-Mode Terahertz Radiation Through a Parallel-Plate Waveguide,” J. Korean Phys. Soc. 53, 1891 (2008).
  18. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94(11), 113901 (2005). [CrossRef] [PubMed]
  19. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005). [CrossRef]
  20. J. D. Jackson, “Classical Electrodynamics” (John Wiley & Sons, New York, 3rd edition, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited