OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9258–9269

Studies of saturated absorption and measurements of optical frequency for lines in the ν1 + ν3 and ν1 + 2ν4 bands of ammonia at 1.5 μm

A. Czajkowski, A. J. Alcock, J. E. Bernard, A. A. Madej, M. Corrigan, and S. Chepurov  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9258-9269 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cavity-enhanced absorption spectrometer was used to saturate several lines of ammonia in the 1510 nm – 1560 nm region. Analysis of power broadening of the saturated absorption feature for one of the ammonia lines yielded a dipole moment value comparable to that of the lines in the ν13 band in acetylene. Highly reproducible frequency measurements of four ammonia line centres were carried out using a frequency comb generated by a mode-locked Cr4+:YAG laser. These results demonstrate the possible application of ammonia saturated absorption lines for frequency metrology and calibration in a spectral region lacking strong absorbers. To our knowledge, this is the first frequency measurement of saturated absorption lines in ammonia at near infrared frequencies and the first reported observation of saturated absorption lines in the ν1+2ν4 band.

© 2009 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:

Original Manuscript: March 27, 2009
Revised Manuscript: May 8, 2009
Manuscript Accepted: May 11, 2009
Published: May 18, 2009

A. Czajkowski, A. J. Alcock, J. E. Bernard, A. A. Madej, M. Corrigan, and S. Chepurov, "Studies of saturated absorption and measurements of optical frequency for lines in the ν1 + ν3 and ν1 + 2ν4 bands of ammonia at 1.5 μm," Opt. Express 17, 9258-9269 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-µm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996). [CrossRef]
  2. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003). [CrossRef] [PubMed]
  3. A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004). [CrossRef]
  4. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of 13C2H2 in the 1.5 µm region," Appl. Phys. B 80, 977-983 (2005). [CrossRef]
  5. C. Latrasse, M. Breton, M. Têtu, N. Cyr, R. Roberge, and B. Villeneuve, "C2HD and 13C2H2 absorption lines near 1530 nm for semiconductor-laser frequency locking," Opt. Lett. 19,1885-1887 (1994). [CrossRef] [PubMed]
  6. J. L. Hardwick, Z. T. Martin, E. A. Schoene, V. Tyng, and E. N. Wolf, "Diode laser absorption spectrum of cold bands of C2HD at 6500 cm-1," J. Mol. Spec. 239, 208-215 (2006). [CrossRef]
  7. J. Jiang, J. E. Bernard, A. A. Madej, A. Czajkowski, S. Drissler, and D. J. Jones "Measurement of acetylene-d absorption lines with a self-referenced fiber laser frequency comb," J. Opt. Soc. Am. B,  24, 2727-2735 (2007). [CrossRef]
  8. J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to the 5S1/2?5D5/2 two-photon transition in 87Rb," Opt. Comm. 173,357-364 (2000). [CrossRef]
  9. S. L. Gilbert, W. C. Swann, and C. M. Wang, "Hydrogen cyanide H13C14N absorption reference for 1530-1560 nm wavelength calibration - SRM 2519," NIST Spec. Publ., National Institute of Standards and Technology, Gaithersburg, MD, USA, pp 260-137 (1998).
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  11. A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5µm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements, (IEEE Press, Piscataway NJ, USA, 2004) IEEE Catalog No. 04CH37570, pp.666-667. [CrossRef]
  12. S. L. Coy and K. K. Lehmann, "Modeling the rotational and vibrational structure of the i.r. and optical spectrum of NH3," Spectrochim. Acta A 45, 47-56, (1989).
  13. L. Lundsberg-Nielsen, F. Heglund, and F. M. Nicolaisen "Analysis of the high-resolution spectrum of ammonia (14NH3) in the near infrared region, 6400-6900cm-1," J. Mol. Spectrosc. 162, 230-245 (1993). [CrossRef]
  14. F. K. Tittel, D. Weidmann, C. Oppenheimer and L. Gianfrani, "Laser absorption spectroscopy for volcano monitoring," Opt. Photonics News 17, 24-31 (2006). [CrossRef]
  15. Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, and F. K. Tittel, "Near-infrared diode laser based spectroscopic detection of ammonia: A comparative study of photoacoustic and direct optical absorption methods," Appl. Spec. 56, 715-719, (2002). [CrossRef]
  16. M. E. Webber, D. S. Baer, and R. K. Hanson, "Ammonia monitoring near 1.5 ?m with diode-laser absorption sensors," Appl. Opt. 40,2031-2042 (2001). [CrossRef]
  17. T. Yanagawa, S. Saito, and Y. Yamamoto, "Frequency stabilization of 1.5 micron InGaAsP distributed feedback laser to NH3 absorption lines," Appl. Phys. Lett. 45,826-828 (1984). [CrossRef]
  18. M. de Labachelerie, C. Latrasse, K. Diomandé, P. Kemssu, and P. Cerez, "A 1.5 µm absolutely stabilized extended-cavity semiconductor laser," IEEE Trans. Instrum. Meas. 40,185-190 (1991). [CrossRef]
  19. M. Corrigan and A. Czajkowski, "Investigation of pressure and power effects on saturated absorption lines using frequency stabilized lasers in the 1.5 µm band," 2006 Canadian Association of Physicists Annual Congress Proceedings, Physics in Canada  62, 82 (2006).
  20. M. Corrigan, "Measurements of absorption line frequency shifts and line broadening effects using frequency stabilized 1.5 micron lasers," M.Sc. Thesis, University of Ottawa (2007).
  21. A. M. Cubillas, J. Hald, and J. C. Petersen "High resolution spectroscopy of ammonia in a hollow-core fiber," Opt. Express 16,3976 - 3985 (2008). [CrossRef] [PubMed]
  22. L-H Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, and R. M. Lees "External cavity tunable diode laser NH3 spectra in the 1.5 um region," Infrared Phys. Technol. 45,31-45 (2004). [CrossRef]
  23. L. Li, R.M. Lees, L-H Xu "External cavity tunable diode laser spectra of the ?1 + 2?4 stretch-bend combination bands of 14NH3 and 15NH3," J. Mol. Spec. 243, 219-226 (2007). [CrossRef]
  24. A. Czajkowski, A. A. Madej, P. Dubé, "Development and study of a 1.5 µm optical frequency standard referenced to the P(16) saturated absorption line in the (?1+?3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004). [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  26. M. Trefler and H. P. Gush, "Electric dipole moment of HD," Phys. Rev. Lett. 20, 703-705 (1968). [CrossRef]
  27. J. W. Simmons and W. Gordy "Structure of the Inversion Spectrum of Ammonia," Phys. Rev. 73, 713-718 (1948). [CrossRef]
  28. K. Shimoda "Line broadening and narrowing effects" in High-Resolution Laser Spectroscopy, Topics in Applied Physics, K. Shimoda, ed., (Springer-Verlag, Berlin, Germany, 1976) Vol. 13.
  29. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," J. Opt. Soc. Am. B 16, 2255-2268 (1999). [CrossRef]
  30. A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina, and E. Sorokin, "Ultra-short pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express  13, 8837- 8844 (2005). [CrossRef] [PubMed]
  31. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, S. Chepurov, "Accurate absolute frequencies of the ?1+?3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006). [CrossRef]
  32. R. Felder, "Practical realization of the definition of the meter, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005). [CrossRef]
  33. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, "Accurate absolute frequencies from 1511 to 1545 nm of the ?1+?3 band of 12C2H2 determined with laser frequency comb interval measurements," J. Opt. Soc. Am. B 23, 2200-2208 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited