OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9314–9322

Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9314-9322 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As2S3 chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse’s optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation.

© 2009 OSA

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.4790) Fourier optics and signal processing : Spectrum analysis
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: March 12, 2009
Revised Manuscript: April 29, 2009
Manuscript Accepted: May 5, 2009
Published: May 19, 2009

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, "Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip," Opt. Express 17, 9314-9322 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Curtis and J. E. Carroll, “Autocorrelation systems for the measurement of picosecond pulses from injection lasers,” Int. J. Electron. 60(1), 87–111 (1986). [CrossRef]
  2. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997). [CrossRef]
  3. J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, “0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 16(2), 566–568 (2004). [CrossRef]
  4. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994). [CrossRef]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  6. C. Dorrer and D. N. Maywar, “RF Spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol. 22(1), 266–274 (2004). [CrossRef]
  7. J. L. Blows, P. Hu, and B. J. Eggleton, “Differential group delay monitoring using an all-optical signal spectrum-analyser,” Opt. Commun. 260(1), 288–291 (2006). [CrossRef]
  8. T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring of a 40-Gb/s RZ signal by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 18(2), 430–432 (2006). [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 3rd edition, 2001).
  10. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  11. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]
  12. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007). [CrossRef] [PubMed]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007). [CrossRef]
  14. L. W. Couch II, Digital and Analog Communication Systems (Prentice Hall Inc. New Jersey, 1997).
  15. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 . [CrossRef] [PubMed]
  16. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 . [CrossRef] [PubMed]
  17. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18(7), 476–478 (1993). [CrossRef] [PubMed]
  18. M. Scaffardi, F. Fresi, G. Meloni, A. Bogoni, L. Potí, N. Calabretta, and M. Guglielmucci, “Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long Bi2O3-based fiber,” Opt. Commun. 268(1), 38–41 (2006). [CrossRef]
  19. V. G. Ta'eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10371 . [CrossRef] [PubMed]
  20. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 ?m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  21. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11506 . [CrossRef] [PubMed]
  22. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2804 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited