OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9337–9346

Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure

Lin Yang, Junichi Motohisa, Takashi Fukui, Lian Xi Jia, Lei Zhang, Ming Min Geng, Pin Chen, and Yu Liang Liu  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 9337-9346 (2009)
http://dx.doi.org/10.1364/OE.17.009337


View Full Text Article

Enhanced HTML    Acrobat PDF (709 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111)B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Pérot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Pérot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field.

© 2009 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 26, 2009
Revised Manuscript: April 30, 2009
Manuscript Accepted: May 10, 2009
Published: May 19, 2009

Citation
Lin Yang, Junichi Motohisa, Takashi Fukui, Lian Xi Jia, Lei Zhang, Ming Min Geng, Pin Chen, and Yu Liang Liu, "Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure," Opt. Express 17, 9337-9346 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291(5505), 851–853 (2001). [CrossRef] [PubMed]
  2. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001). [CrossRef] [PubMed]
  3. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002). [CrossRef]
  4. J. C. Johnson, H. Q. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. D. Yang, “Single nanowire lasers,” J. Phys. Chem. B 105(46), 11387–11390 (2001). [CrossRef]
  5. S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005). [CrossRef]
  6. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett. 93(5), 051101 (2008). [CrossRef]
  7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  8. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96(14), 143903 (2006). [CrossRef] [PubMed]
  9. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003). [CrossRef] [PubMed]
  10. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5(5), 917–920 (2005). [CrossRef] [PubMed]
  11. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006). [CrossRef]
  12. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008). [CrossRef] [PubMed]
  13. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004). [CrossRef]
  14. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  15. Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001). [CrossRef] [PubMed]
  16. F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004). [CrossRef]
  17. P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 88(13), 133105 (2006). [CrossRef]
  18. L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 89(20), 203110 (2006). [CrossRef]
  19. J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E 23(3-4), 298–304 (2004). [CrossRef]
  20. L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology 18(10), 105302 (2007). [CrossRef]
  21. L. Yang, J. Motohisa, K. Tomioka, J. Takeda, T. Fukui, M. M. Geng, L. X. Jia, L. Zhang, and Y. L. Liu, “Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well,” Nanotechnology 19(27), 275304 (2008). [CrossRef] [PubMed]
  22. S. R. Kisting, P. W. Bohn, E. Andideh, I. Adesida, B. T. Cunningham, G. E. Stillman, and T. D. Harris, “High precision temperature- and energy-dependent refractive index of GaAs determined from excitation of optical waveguide eigenmodes,” Appl. Phys. Lett. 57(13), 1328–1330 (1990). [CrossRef]
  23. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 ?m,” Appl. Phys. Lett. 77(11), 1614 (2000). [CrossRef]
  24. B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007). [CrossRef]
  25. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16604 . [CrossRef] [PubMed]
  26. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy,” Nano Lett. 7(12), 3598-3602 (2007). [CrossRef]
  27. J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).
  28. Y. A. Zhang and M. Loncar, “Ultra-high quality factor optical resonators based on semiconductor nanowires,” Opt. Express 16(22), 17400–17409 (2008), 
 http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-17400 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited