OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9369–9375

Transmission enhancement of ultraslow light in an atom shelved model of spectral hole burning solids

Byoung S. Ham and Joonsung Hahn  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9369-9375 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present transmission enhancement of ultraslow light in an inhomogeneously broadened spectral hole-burning solid medium by using precedent dummy light. The function of the dummy light is to burn a half-depth narrow spectral hole in an optically shelved solid system and to maintain the system optically transparent to the probe light, where the probe must experiences ultraslow group velocity due to the narrow spectral hole. The observed transmission increase is as high as 7 times compared with self-induced ultraslow light [J. Hahn and B. S. Ham, Opt. Express 16, 16723 (2008)], where the transmission enhancement is equivalent to 105 amplification considering an optical depth of d = 10.

© 2009 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Slow and Fast Light

Original Manuscript: January 28, 2009
Revised Manuscript: May 13, 2009
Manuscript Accepted: May 16, 2009
Published: May 20, 2009

Byoung S. Ham and Joonsung Hahn, "Transmission enhancement of ultraslow light in an atom shelved model of spectral hole burning solids," Opt. Express 17, 9369-9375 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999) (For EIT, see references therein.). [CrossRef]
  2. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005). [CrossRef] [PubMed]
  3. S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005). [CrossRef]
  4. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65(3), 033833 (2002). [CrossRef]
  5. M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67(2), 023811 (2003). [CrossRef]
  6. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  7. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007). [CrossRef] [PubMed]
  8. S. Haroche, and J.-M. Raimond, Exploring the Quantum, (Oxford, 2006).
  9. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2002). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  11. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95(14), 143601 (2005). [CrossRef] [PubMed]
  12. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  13. R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005). [CrossRef]
  14. A. A. Juarez, R. Vilaseca, Z. Zhu, and D. J. Gauthier, “Room-temperature spectral hole burning in an engineered inhomogeneously broadened resonance,” Opt. Lett. 33(20), 2374–2376 (2008). [CrossRef] [PubMed]
  15. R. M. Macfarlane, and R. M. Shelby, “Coherent Transient and Holeburning Spectroscopy of Rare Earth Ions in Solids,” in Spectroscopy of Solids Containing Rare Earth Ions, A. Kaplyanskii and R. M. Macfarlene, eds. (North-Holland, Amsterdam, 1987).
  16. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008). [CrossRef] [PubMed]
  17. B. S. Ham and J. Hahn, “Coherent dynamics of self-induced ultraslow light for all-optical switching,” Opt. Lett. 33, 2880–2882 (2008). [CrossRef] [PubMed]
  18. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47(22), 14741–14752 (1993). [CrossRef]
  19. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Spin coherence excitation and rephrasing with optically shelved atoms,” Phys. Rev. B 58(18), R11825–R11828 (1998). [CrossRef]
  20. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52(6), 3963–3969 (1995). [CrossRef]
  21. For the measurement of inhomogeneous broadening in 0.05 at. % Pr:Y2SiO5, see also Q-Y. He et al., “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystal,” Phys. Rev. B 73, 195124 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited