OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9376–9390

The Alvarez and Lohmann refractive lenses revisited

Sergio Barbero  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9376-9390 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.

© 2009 OSA

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(080.2740) Geometric optics : Geometric optical design
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

Original Manuscript: April 17, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: May 16, 2009
Published: May 20, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Sergio Barbero, "The Alvarez and Lohmann refractive lenses revisited," Opt. Express 17, 9376-9390 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. W. Alvarez, “Development of variable- focus lenses and a new refractor,” J. Am. Optom. Assoc. 49(1), 24–29 (1978). [PubMed]
  2. L. W. Alvarez, and W. E. Humphrey, “Variable power lens and system,” US Patent 3,507,565 (1970).
  3. A. W. Lohmann, “A New Class Of Varifocal Lenses,” Appl. Opt. 9(7), 1669–1671 (1970). [CrossRef] [PubMed]
  4. W. E. Humphrey, “Remote subjective refractor employing continuously variable sphere-cylinder corrections,” Opt. Eng. 15, 286–291 (1976).
  5. W. E. Humphrey, “Apparatus for opthalmological prescription readout,” US Patent 3,927,933 (1974).
  6. S. S. Rege, T. S. Tkaczyk, and M. R. Descour, “Application of the Alvarez-Humphrey concept to the design of a miniaturized scanning microscope,” Opt. Express 12(12), 2574–2588 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-12-2574 . [CrossRef] [PubMed]
  7. G. L. Van Der Heijde, “Artificial intraocular lens e.g. Alvarez-type lens for implantation in eye, comprises two lens elements with optical thickness such that power of the lens changes by transversal displacement of one lens element relative to the other element,” Int Patent 2006/025726 (2006).
  8. A. N. Simonov, G. Vdovin, and M. C. Rombach, “Cubic optical elements for an accommodative intraocular lens,” Opt. Express 14(17), 7757–7775 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7757 . [CrossRef] [PubMed]
  9. H. Mukaiyama, K. Kato, and A. Komatsu, “Variable focus visual power correction device - has optical lenses superposed so that main meridians are coincident with one another,” Int Patent 93/15432 (1994).
  10. G. L. van Der Heijde, “Universal spectacles for children in developing countries,” in Mopane: Conference on Visual Optics (Kruger National Park, South Africa, 2006).
  11. B. Spivey, “Lens for spectacles, has thickness designed so that by adjusting relative positions of two lenses in direction perpendicular to viewing direction, combined focus of two lenses is changed,” US Patent 151184 (2008).
  12. C. F. Cheung, and W. B. Lee, Surface generation in ultra-precision diamond turning: modelling and practices (Professional Engineering Publ., London 2003).
  13. I. M. Barton, S. N. Dixit, L. J. Summers, K. Avicola, J. Wilhelmsen, and J. Wilhelmsen, “Diffractive Alvarez lens,” Opt. Lett. 25(1), 1–3 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-1-1 . [CrossRef]
  14. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, San Francisco, 1968).
  15. J. C. Maxwell, “On the Focal Lines of a Refracted Pencil,” Proc. London Math. Soc. s1–4, 337–343 (1873).
  16. A. Walther, The ray and wave theory of lenses (Cambridge University Press, 1995).
  17. J. Rubinstein and G. Wolansky, “Differential relations for the imaging coefficients of asymmetric systems,” J. Opt. Soc. Am. A 20(12), 2365–2369 (2003), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-20-12-2365 . [CrossRef]
  18. B. D. Stone and G. W. Forbes, “Foundations of first-order layout for asymmetric systems: an application of Hamilton’s methods,” J. Opt. Soc. Am. A 9(1), 96–109 (1992), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-9-5-832 . [CrossRef]
  19. A. Gullstrand, “Die Reelle Optische Abbildung,” Sven. Vetensk. Handl 41, 1–119 (1906).
  20. J. B. Keller and H. B. Keller, “Determination of reflected and transmitted fields by geometrical optics,” J. Opt. Soc. Am. A 40(1), 48–52 (1950), http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-40-1-48 . [CrossRef]
  21. J. A. Kneisly, “Local Curvature Of Wavefronts In Optical System,” J. Opt. Soc. Am. A 54(2), 229–235 (1964), http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-54-2-229 . [CrossRef]
  22. O. N. Stavroudis, The mathematics of geometrical and physical optics: the k-function and its ramifications (Wiley-VCH, Weinheim, 2006).
  23. J. E. A. Landgrave and J. R. MoyaCessa, “Generalized Coddington equations in ophthalmic lens design,” J. Opt. Soc. Am. A 13(8), 1637–1644 (1996), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-13-8-1637 . [CrossRef]
  24. D. G. Burkhard and D. L. Shealy, “Simplified formula for the illuminance in an optical-system,” Appl. Opt. 20(5), 897–909 (1981), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-5-897 . [CrossRef] [PubMed]
  25. M. P. Keating, Geometric, physical, and visual optics (Butterworth-Heinemann, Boston, 2002).
  26. W. F. Harris, “Wavefronts and their propagation in astigmatic optical systems,” Optom. Vis. Sci. 73(9), 605–612 (1996). [CrossRef]
  27. E. Acosta and R. Blendowske, “Paraxial propagation of astigmatic wavefronts in optical systems by an augmented stepalong method for vergences,” Optom. Vis. Sci. 82(10), 923–932 (2005). [CrossRef] [PubMed]
  28. C. E. Campbell, “Generalized Coddington equations found via an operator method,” J. Opt. Soc. Am. A 23(7), 1691–1698 (2006), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-7-1691 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited