OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9391–9400

A semiconductor laser device for the generation of surface-plasmons upon electrical injection

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9391-9400 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmons are electromagnetic waves originating from electrons and light oscillations at metallic surfaces. Since freely propagating light cannot be coupled directly into surface-plasmon modes, a compact, semiconductor electrical device capable of generating SPs on the device top metallic surface would represent an advantage: not only SP manipulation would become easier, but Au-metalized surfaces can be easily functionalized for applications. Here, we report a demonstration of such a device. The direct proof of surface-plasmon generation is obtained with apertureless near-field scanning optical microscopy, which detects the presence of an intense, evanescent electric field above the device metallic surface upon electrical injection.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 20, 2009
Revised Manuscript: April 22, 2009
Manuscript Accepted: April 26, 2009
Published: May 21, 2009

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, "A semiconductor laser device for the generation of surface-plasmons upon electrical injection," Opt. Express 17, 9391-9400 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface plasmon circuitry," Phys. Today 61, 44-50 (2008). [CrossRef]
  2. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef]
  4. F. Lopez-Tejeira, S. G. Rodrigo, L. Martn-Moreno, F. J. Garca-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzlez, J. C. Weeber, and A. Dereux, "Efficient unidirectional nanoslit couplers for surface-plasmons," Nat. Phys. 3, 324-328 (2007). [CrossRef]
  5. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Dielectric-loaded surface-plasmon polariton waveguides at telecommunication wavelengths: excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008). [CrossRef]
  6. F. Zenhausern, M. P. O’Boyle, and H. K. Wikramasynghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (2004). [CrossRef]
  7. R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near field optical microscopy by local perturbation of a diffraction spot," Microsc. Microanal. Microstruct. 5, 389-397 (2004). [CrossRef]
  8. M. I. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003). [CrossRef]
  10. K. F. MacDonald, Z. L. S’amson, M. I. Stockman, and N. I. Zheludev, "Ultrafast plasmonics," Nat. Photonics 3, 53-58 (2009).
  11. A. Degiron, P. Berini, and D. R. Smith, "Guiding light with long-range plasmons," Opt. Photonics News 19, 28-34 (2008). [CrossRef]
  12. J. Y. Laluet, E. Devaux, C. Genet, T.W. Ebbesen, J. C. Weeber, and A. Dereux, "Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments," Opt. Express 15, 3488-3495 (2007). [CrossRef] [PubMed]
  13. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  14. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, "Organic plasmon-emitting diode," Nat. Photonics 2, 684-687 (2008). [CrossRef]
  15. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 ?m surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006). [CrossRef]
  16. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Recent progress in quantum cascade lasers and applications," Rep. Prog. Phys. 64, 1533-1601 (2001). [CrossRef]
  17. J. M. Montgomery and S. K. Gray, "Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures," Phys. Rev. B 77, 125407 (2008). [CrossRef]
  18. A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, "Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes," Electron. Lett. 44, 807-808 (2008). [CrossRef]
  19. The finite elements solver "ComsolMultiphysics" has been employed for the simulations. Bloch-periodic boundary conditions where implemented.
  20. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. J. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007). [CrossRef] [PubMed]
  21. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15, 113-128 (2007). [CrossRef] [PubMed]
  22. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, and A. G. D. E. H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2007). [CrossRef]
  23. O. Demichel, L. Mahler, t. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosinuas, "Surface plasmon photonic structures in terahertz quantum cascade lasers." Opt. Express 14, 5335-5345 (2006). [CrossRef] [PubMed]
  24. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, "Coupling dielectric waveguide modes to surface-plasmon polaritons," Opt. Express 16, 10455-10464 (2008). [CrossRef] [PubMed]
  25. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006). [CrossRef] [PubMed]
  26. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999). [CrossRef]
  27. N. Yu, L. Diehl, E. Cubukcu, C. Pflgl, D. Bour, S. Corzine, J. Zhu, G. Hofler, K. B. Crozier, and F. Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express 15, 13227-13235 (2007). [CrossRef] [PubMed]
  28. V. Moreau, M. Bahriz, R. Colombelli, P. A. Lemoine, Y. De Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007). [CrossRef]
  29. J. B. Pendry, L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  30. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. F.-D. L. Mart’?n-Moreno, and F. J. Garcia-Vidal, "Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces," Nat. Photonics 2, 175-179 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited