OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9408–9420

Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass

Emmanuel Boss, Wayne Slade, and Paul Hill  »View Author Affiliations


Optics Express, Vol. 17, Issue 11, pp. 9408-9420 (2009)
http://dx.doi.org/10.1364/OE.17.009408


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m2/gr despite large variability in size distribution and composition across varied aquatic environments.

© 2009 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.2200) Scattering : Extinction
(290.2558) Scattering : Forward scattering
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 19, 2009
Revised Manuscript: May 19, 2009
Manuscript Accepted: May 19, 2009
Published: May 21, 2009

Virtual Issues
Vol. 4, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Emmanuel Boss, Wayne Slade, and Paul Hill, "Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass," Opt. Express 17, 9408-9420 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. L. Carder, and D. K. Costello, “Optical effects of large particles,” in Ocean Optics, R. W. Spinrad, K. L. Carder, and M. J. Perry, eds. (Oxford University Press, 1994), pp. 243–257.
  2. D. K. Costello, K. L. Carder, and W. Hou, “Aggregation of diatom bloom in a mesocosm: Bulk and individual particle optical measurements,” Deep Sea Res. Part II Top. Stud. Oceanogr. 42(1), 29–45 (1995). [CrossRef]
  3. W. Hou, K. L. Carder, and D. K. Costello, “Scattering phase function of very large particles in the ocean,” Proc. SPIE 2963, 579–584 (1997). [CrossRef]
  4. A. Hatcher, P. Hill, and J. Grant, “Optical backscatter of marine flocs,” J. Sea Res. 46(1), 1–12 (2001). [CrossRef]
  5. E. N. Flory, P. S. Hill, T. G. Milligan, and J. Grant, “The relationship between floc area and backscatter during a spring phytoplankton bloom,” Deep Sea Res. Part I Oceanogr. Res. Pap. 51(2), 213–223 (2004). [CrossRef]
  6. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  7. M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta (Lond.) 33, 577–591 (1986).
  8. C. M. Sorensen, “Light scattering by fractal aggregates: A review,” Aerosol Sci. Technol. 35, 648–687 (2001).
  9. P. Latimer, “Experimental tests of a theoretical method for predicting light scattering by aggregates,” Appl. Opt. 24(19), 3231–3239 (1985). [CrossRef] [PubMed]
  10. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001). [CrossRef]
  11. A. Morel, “Diffusion de la lumie`re par les eaux de mer. Re’sultats expe’rimentaux et approche theorique,” in Optics of the Sea (AGARD Lectures Series, 1973), pp. 3.1–1–3.1–76.
  12. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40(27), 4885–4893 (2001). [CrossRef]
  13. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003). [CrossRef]
  14. M. Jonasz, and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic Press, 2007).
  15. W. R. Clavano, E. Boss, and L. Karp-Boss, ““Inherent optical properties of non-spherical marine-like particles – from theory to observations,” Oceanogr. Mar. Biol. Annu. Rev. 45, 1–38 (2007). [CrossRef]
  16. E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89(C5), 8197–8203 (1984). [CrossRef]
  17. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168(1–4), 89–114 (2000). [CrossRef]
  18. P. Traykovski, R. J. Latter, and J. D. Irish, “A laboratory evaluation of the laser in situ scattering and transmissometery instrument using natural sediments,” Mar. Geol. 159, 355–367 (1999). [CrossRef]
  19. W. H. Slade and E. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006). [CrossRef] [PubMed]
  20. A. Khelifa and P. S. Hill, “Models for effective density and settling velocity of flocs,” J. Hydraul. Res. 44, 390–401 (2006). [CrossRef]
  21. F. Maggi, “Variable fractal dimension: A major control for floc structure and flocculation kinematics of suspended cohesive sediment,” J. Geophys. Res. 112(C7), C07012 (2007). [CrossRef]
  22. D. Risovic and M. Martinis, “Fractal dimensions of suspended particles in seawater,” J. Colloid Interface Sci. 182(1), 199–203 (1996). [CrossRef]
  23. G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1 ?m and 1 cm at Monterey Bay determined using multiple instruments,” Deep Sea Res. Part I Oceanogr. Res. Pap. 44(11), 1739–1767 (1997). [CrossRef]
  24. J. M. Fox, P. S. Hill, T. G. Miligan, A. S. Ogston, and A. Bldrin, “Floc fraction in the waters of the Po River prodelta,” Cont. Shelf Res. 24(15), 1699–1715 (2004). [CrossRef]
  25. X. Li, U. Passow, and B. E. Logan, “Fractal dimensions of small (15-200 ?m) particles in Eastern Pacific coastal waters,” Deep Sea Res. Part I Oceanogr. Res. Pap. 45(1), 115–131 (1998). [CrossRef]
  26. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37(27), 6525–6536 (1998). [CrossRef]
  27. C. F. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1987).
  28. L. E. Paramonov, “On optical equivalence of randomly oriented ellipsoidal and polydisperse spherical particles. The extinction, scattering and absorption cross sections,” Opt. Spectrosc. 77, 589–592 (1994).
  29. N. V. Shepelevich, I. V. Prostakova, and V. N. Lopatin, “Light-scattering by optically soft randomly oriented spheroids,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 375–381 (2001). [CrossRef]
  30. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996). [CrossRef]
  31. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. V. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16(6), 691–707 (1999). [CrossRef]
  32. F. P. Chavez, D. M. Karl, D. Hebel, M. Latasa, and L. Campbell, “On the chlorophyll-a retention properties of glass-fiber GF/F filters,” Limnol. Oceanogr. 40, 428–433 (1995). [CrossRef]
  33. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]
  34. M. S. Twardowski, E. Boss, J. B. MacDonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001). [CrossRef]
  35. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17(3), 1535–1550 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited