OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9434–9441

Whispering-gallery mode micro-kylix resonators

Mher Ghulinyan, Alessandro Pitanti, Georg Pucker, and Lorenzo Pavesi  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9434-9441 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Owing to their ability to confine electromagnetic energy in ultrasmall dielectric volumes, micro-disk, ring and toroid resonators hold interest for both specific applications and fundamental investigations. Generally, contributions from various loss channels within these devices lead to limited spectral windows (Q-bands) where highest mode Q-factors manifest. Here we describe a strategy for tuning Q-bands using a new class of micro-resonators, named micro-kylix resonators, in which engineered stress within an initially flat disk results in either concave or convex devices. To shift the Q-band by 60nm towards short wavelengths in flat micro-disks a 50% diameter reduction is required, which causes severe radiative losses suppressing Q’s. With a micro-kylix, we achieve similar tuning and even higher Q’s by two orders of magnitude smaller diameter modification (0.4%). The phenomenon relies on geometry-induced smart interplay between modified dispersions of material absorption and radiative loss-related Q-factors. Micro-kylix devices can provide new functionalities and novel technological solutions for photonics and micro-resonator physics.

© 2009 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optical Devices

Original Manuscript: March 23, 2009
Revised Manuscript: May 5, 2009
Manuscript Accepted: May 5, 2009
Published: May 21, 2009

Mher Ghulinyan, Alessandro Pitanti, Georg Pucker, and Lorenzo Pavesi, "Whispering-gallery mode micro-kylix resonators," Opt. Express 17, 9434-9441 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rayleigh, "Further applications of Bessel’s functions of high order to the whispering gallery and allied problems," Philos. Mag. 27, 100-109 (1914).
  2. A. B. Matsko, and V. S. Ilchenko, "Optical Resonators With Whispering-Gallery Modes Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  3. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  4. T. Krauss, P. J. R. Laybourn, and J. Roberts, "CW operation of semiconductor ring lasers," Electron. Lett. 26, 2095-2097 (1990). [CrossRef]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003). [CrossRef] [PubMed]
  6. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, "Laser emission from quantum dots in microdisk structures," Appl. Phys. Lett. 77, 184-186 (2000). [CrossRef]
  7. Zh. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007). [CrossRef]
  8. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006). [CrossRef] [PubMed]
  9. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321, 1172-1176 (2008). [CrossRef] [PubMed]
  10. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble, "A Photon Turnstile Dynamically Regulated by One Atom," Science 319, 1062-1065 (2008). [CrossRef] [PubMed]
  11. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, "Trapping, corralling and spectral bonding of optical resonances through optically induced potentials," Nat. Photonics 1, 658-665 (2007). [CrossRef]
  12. image source http://it.wikipedia.org/wiki/Kylix.
  13. A. Farjadpour, R. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  14. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769(1997). Erratum, ibid. 109, 4128 (1998). [CrossRef]
  15. L. Pavesi and D. Lockwood, Silicon Photonics. Topics in Applied Physics (Springer-Verlag, Berlin, 2004) Vol. 94.
  16. A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, and L. Pavesi, in Silicon Nanocrystals: Fundamentals, Synthesis and Applications (eds., L. Pavesi and R. Turan), (Wiley-VCH Verlag GmbH, Berlin, 2009)
  17. L. Ferraioli, M. Wang, G. Puker, D. Navarro-Urrios, N. Daldosso, C. Kompocholis, and L. Pavesi, "Photoluminescence of silicon nanocrystals in silicon oxide," J. Nanomater 2007, 43491 (2007).
  18. G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma enhanced chemical-vapour deposition grown Silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002). [CrossRef]
  19. M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, "Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator," Opt. Express 16, 13218-13224 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited