OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 11 — May. 25, 2009
  • pp: 9442–9453

Quasi-phase matched second-harmonic generation through thermal poling in femtosecond laser-written glass waveguides

Guangyu Li, Kim A. Winick, Ali A. Said, Mark Dugan, and Philippe Bado  »View Author Affiliations

Optics Express, Vol. 17, Issue 11, pp. 9442-9453 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quasi-phase matched second-harmonic generation at 532 nm is demonstrated in a channel waveguide that is written in bulk fused silica using a femtosecond laser. The second-order nonlinear grating is fabricated using uniform thermal poling followed by periodic erasure inside an e-beam deposition system caused, by what we believe to be, x-rays. A SHG conversion efficiency of 2 × 10-5 %/W-cm2 was obtained for a 1 cm long device, corresponding to an effective nonlinear coefficient of 0.0075 pm/V.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: March 23, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: May 15, 2009
Published: May 21, 2009

Guangyu Li, Kim A. Winick, Ali A. Said, Mark Dugan, and Philippe Bado, "Quasi-phase matched second-harmonic generation through thermal poling in femtosecond laser-written glass waveguides," Opt. Express 17, 9442-9453 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. A. C. Liu, J. F. Digonnet, and G. S. Kino, "Electro-optic phase modulation in a silica channel waveguide," Opt. Lett. 19, 466-468 (1994). [CrossRef] [PubMed]
  3. O. Tarasenko and W. Margulis, "Electro-optic fiber modulation in a Sagnac inteferometer," Opt. Lett. 32, 1356-1358 (2007). [CrossRef] [PubMed]
  4. V. Pruneri and P. G. Kazansky, "Frequency doubling of picosecond pulses in periodically poled D-shape silica fiber," Electron. Lett. 33, 318-319, (1997). [CrossRef]
  5. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003). [CrossRef] [PubMed]
  6. P. G. Kazansky, L. Dong, and P. S. J. Russell, "Vacuum poling: an improved technique for effective thermal poling of silica glass and germanosilicate optical fibers," Electron. Lett. 30, 1345-1346 (1994). [CrossRef]
  7. P. G. Kazansky, A. Kamal, and P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993). [CrossRef] [PubMed]
  8. J. M. Dell, M. J. Joyce, and G. O. Stone, "Erasure of poling-induced second-order optical nonlinearities in silica by uv exposure," Proc. SPIE 2289, 185-193 (1994). [CrossRef]
  9. S. Montant, A. L. Calvez, E. Freysz, A. Ducasse, V. Nazabal, E. Fargin, and G. L. Flem, "Light-controlled erasure of induced?(2) in thermally poled glass," Appl. Phys. Lett. 74, 2623-2625 (1999). [CrossRef]
  10. H.-Y. Chen, J.-S. Sue, Y.-H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003). [CrossRef] [PubMed]
  11. H.-Y. Chen, C.-L. Lin, Y.-H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase- matched second-harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005). [CrossRef]
  12. S. Chao, H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T. Shih, and H. Niu, "Quasi-phase-matched second-harmonic generation in Ge-ion implanted fused silica channel waveguide," Opt. Express 13, 7091-7096 (2005). [CrossRef] [PubMed]
  13. J. Fage-Pedersen, R. Jacobsen, and M. Kristensen, "Planar glass devices for efficient periodic poling," Opt. Express 13, 8514-8519 (2005). [CrossRef] [PubMed]
  14. R. Schineller, R. P. Flam and D. W. Wilmot, "Optical waveguides formed by proton irradiation of fused silica," J. Opt. Soc. Am. 58, 1171-1176 (1968). [CrossRef]
  15. J. Bell and C. N. Ironside, "Channel optical waveguides directly written in glass with an electron beam," Electron. Lett. 27, 448-450 (1991). [CrossRef]
  16. K. Miura, J. Qiu, H, Inouye, and T. Mitsuyu, "Photowritten optical waveguides in various glasses with ultrashort laser pulses," Appl. Phys. Lett. 71, 3329-3331 (1997). [CrossRef]
  17. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly-written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003). [CrossRef]
  18. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three dimensional photonic devices fabricated in glass by use of a femotosecond laser oscillator, Opt. Lett. 30, 1060-1062 (2005). [CrossRef] [PubMed]
  19. G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, "A waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling," Opt. Lett. 31,739-741 (2006). [CrossRef] [PubMed]
  20. Gaungyu Li, K. A.  Winick, Ali Said, Mark Dugan and Phillipe Bado, "Nonlinear Optical Waveguide Devices Based on Femtosecond Laser Direct Writing and Thermal Poling in Fused Silica," OSA Frontiers in Optics Annual Meeting, Tucson, Arizona, October 16-20 (2005), post-deadline paper PDP-B7.
  21. F. P. Mezzapesa, I. C. S. Carvalho, C. Cortari, P. G. Kazansky, J. S. Wilkinson, and G. Chen, "Voltage-assisted cooling: a new route to enhance?(2) during thermal poling," in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America 2005), paper CMW7.
  22. H. An and S. Fleming, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004). [CrossRef]
  23. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788, 1996. [CrossRef] [PubMed]
  24. R. Blum, A. Truhins, B. Poumellec and S. Zhao, "The use of X-ray-induced and thermostimulated visible and UV luminescence for understanding X-ray poling of silica glasses," J. Luminescence 122-123, 137-141 (2007). [CrossRef]
  25. L. Gerward, "X-ray attenuation coefficients and atomic photoelectric absorption cross sections of silicon," J. Phys. B. 14, 3389-3395 (1981). [CrossRef]
  26. R. H. Millar and J. R. Greening, "Experimental x ray mass attenuation coefficients for materials of low atomic number in the energy range 4 to 25 keV," J. Phys. B 7, 2332-2344 (1974). [CrossRef]
  27. T. E. Everhart an P. H. Hoff, "Determination of kilovolt electron energy dissipation vs penetration distance in solid materials," J. Appl. Phys. 42, 5837-5846 (1971). [CrossRef]
  28. A. Yariv,Optical Electronics in Modern Communications, 5th Ed. (Oxford 1997), Chap. 8.
  29. T. Toyoda and M. Yabe, "The temperature dependence of the refractive indices of fused silica and crystal quartz," J. Appl. Phys. 16, L97- L100 (1983).
  30. J. M. Jewell, "Thermooptic coefficients of some standard reference material glasses," J. Am. Ceram. Soc. 74, 1689-1691 (1991). [CrossRef]
  31. H. An, S. Fleming, B. W. McMillen, K. P. Chen, and D. Snoke, "Thermal poling induced second-order nonlinearity in femtosecond laser-modified fused silica," Appl. Phys. Lett. 93, 061115-1 - 061115-3 (2008). [CrossRef]
  32. J. Beermann, S. Bozhevolnyi, K. Pedersen, J. Fage-Pedersen, "High-resolution second harmonic microscopy of poled silica waveguides," Opt. Commun. 221, 295-300 (2003). [CrossRef]
  33. C. Corbari, J. D. Mills, O. Deparis, B. G. Klappauf, and P. G. Kazansky, "Thermal poling of glass modified by femtosecond laser irradiation," Appl. Phys. Lett. 81, 1585-1587 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited