OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10019–10024

Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate

Szu-Lin Cheng, Jesse Lu, Gary Shambat, Hyun-Yong Yu, Krishna Saraswat, Jelena Vuckovic, and Yoshio Nishi  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10019-10024 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the room temperature electroluminescence (EL) at 1.6 µm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a superlinear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve better efficiency of the device. Thermal enhancement effects observed in temperature dependent EL spectra show the capability of this device to operate at room temperature or above. These detailed studies show that Ge can be a good candidate for a Si compatible light emitting device.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

Original Manuscript: April 8, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: May 17, 2009
Published: May 29, 2009

Szu-Lin Cheng, Jesse Lu, Gary Shambat, Hyun-Yong Yu, Krishna Saraswat, Jelena Vuckovic, and Yoshio Nishi, "Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate," Opt. Express 17, 10019-10024 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Kimerling, "Silicon microphotonics," Appl. Surf. Sci. 159-160, 8-13 (2000). [CrossRef]
  2. J. Liu, X. Sun, D. Pang, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Opt. Express 15, 11272-11277 (2007). [CrossRef] [PubMed]
  3. V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, and P. Werner, "Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm," Phys. Status Solidi A 198, R4-R6 (2003). [CrossRef]
  4. Y. H. Peng, C. H. Hsu, C. H. Kuan, and C. W. Liu, "The evolution of electroluminescence in Ge quantum-dot diodes with the fold number," Appl. Phys. Lett. 85, 6107-6109 (2004). [CrossRef]
  5. M. H. Liao, C. H. Lee, T. A. Hung, and C. W. Liu, "The intermixing and strain effects on electroluminescence of SiGe dots," J. Appl. Phys. 102, 053520 (2007). [CrossRef]
  6. R. A. Soref, and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si Heterostructures," Superlattice Microst. 14, 189-193 (1993). [CrossRef]
  7. X. Sunn, J. Liu, L. C. Kimerling and J. Michel, "Room temperature direct band gap electroluminescence from Ge-on-Si light emitting diode," Opt. Lett. 34, 1198-1200 (2009). [CrossRef]
  8. M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, "Electroluminescence from the Ge quantum dot MOS tunneling diodes," IEEE Electron Device Lett. 27, 252-254 (2006). [CrossRef]
  9. C. O. Chui, K. Gopalakrishnan, P. G. Griffin, J. D. Plummer, and K. C. Saraswat, "Activation and diffusion studies of ion-implantated p and n dopants in germanium," Appl. Phys. Lett. 83, 3275-3277 (2003). [CrossRef]
  10. H. Y. Yu, S. L. Cheng, P. B. Griffin, Y. Nishi, and K. C. Saraswat, "Germanium in-situ doped epitaxial growth on Si for high performance n+/p junction diode," (submitted to IEEE Electron Device Lett.).
  11. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited