OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10056–10068

Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10056-10068 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the absorptive and refractive nonlinearities at 532 nm and 26 ps pulses for silicon-nitride films containing silicon nanoclusters (nc-Si) prepared by remote plasma-enhanced chemical vapor deposition (RPECVD). Using a self-diffraction technique, we measured for the as-grown sample β=7.7×10-9m/W, n2=1.8×10-16m2/W, and |χ(3)1111|=4.6×10-10esu; meanwhile, when the sample was exposed to an annealing process at 1000°C during one hour in a nitrogen atmosphere, we obtained β=-5×10-10m/W, n2=9×10-17m2/W, and |χ(3)1111|=1.1×10-10esu. A pure electronic nonlinear refraction was identified and a large threshold ablation of 41 J/cm2 was found for our films. By fitting nonlinear optical transmittance measurements, we were able to estimate that the annealed sample exhibits a response time close to 1 fs. We report an enhancement in the photoluminescence (PL) signal after the annealing process, as well as a red-shift due to an increment in size of the nc-Si during the thermal process.

© 2009 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3270) Nonlinear optics : Kerr effect
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

Original Manuscript: January 5, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 25, 2009
Published: June 1, 2009

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, "Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film," Opt. Express 17, 10056-10068 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Sung, and C.-. Choi, "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films," Appl. Phys. Lett. 85, 5355-5357. (2004). [CrossRef]
  2. T.-W. Kim, N. Park, K.-H. Kim, and G. Y. Sung, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Appl. Phys. Lett. 88, 123102-123103 (2006). [CrossRef]
  3. N. Lalic and J. Linnros, "Light emitting diode structure based on Si nanocrystals by implantation into thermal oxide," J. Lumin. 80, 263-267 (1999). [CrossRef]
  4. S.-H. Choi and R. G. Elliman, "Reversible charging effects in SiO2 films containing silicon nanoparticles," Appl. Phys. Lett. 75, 968-970 (1999). [CrossRef]
  5. D. J. Lockwood, Ed., Light Emission in Silicon: From Physics to Devices, (Academic, San Diego, 1998), Chap. 1.
  6. J. S. Biteen, A. L. Tchebotareva, A. Polman, N. S. Lewis, and H. A. Atwater, "Controlled passivation and luminescence blue shifts of isolated silicon nancrystals," Mater. Res. Soc. Symp. Proc. 770, I6.2.1 (2003).
  7. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, "Surface chemistry of silicon nanoclusters," Phys. Rev. Lett. 88, 097401-097401-4 (2002). [CrossRef] [PubMed]
  8. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett. 82, 197-200 (1999). [CrossRef]
  9. R.W. Boyd, Nonlinear Optics, (Academic Press, San Diego 1992).
  10. Y. Li, S. Zhang, J. Liu, and K. Zhang, "Quantum correlation between fundamental and second-harmonic field via second-harmonic generation," J. Opt. Soc. Am. B 24, 660-663 (2007). [CrossRef]
  11. M. D. Eisaman, A. Andra, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005). [CrossRef] [PubMed]
  12. J. P. Dowling, "Quantum information: To compute or not to compute?" Nature 439, 919-920 (2006). [CrossRef] [PubMed]
  13. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman "Thermal on Kerr non linear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express 16, 12987-12994 (2008). [CrossRef] [PubMed]
  14. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  15. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  16. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005). [CrossRef] [PubMed]
  17. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  19. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 μm," Opt. Express 10, 1305-1313 (2002). [PubMed]
  20. R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," IEEE Electron. Lett. 38, 1352-1354 (2002). [CrossRef]
  21. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef] [PubMed]
  22. R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005). [CrossRef] [PubMed]
  23. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Panniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005). [CrossRef] [PubMed]
  24. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728, (2005). [CrossRef] [PubMed]
  25. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006). [CrossRef] [PubMed]
  26. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004). [CrossRef] [PubMed]
  27. A. Cowan, G. Rieger, and J. Young, "Nonlinear transmission of 1.5 mm pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004). [CrossRef] [PubMed]
  28. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All-optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef] [PubMed]
  29. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express 14, 12388-12393 (2006). [CrossRef] [PubMed]
  30. M.A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon waveguides," Opt. Express 15, 12949-12958 (2007). [CrossRef] [PubMed]
  31. P. Cheng, H. Zhu, Y. Bai, Y. Zhang, T. He, and Y. Mo, "Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations," Opt. Commun. 270, 391-395 (2007). [CrossRef]
  32. H. Yıldırım and C. Bulutay, "Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals: a theoretical assessment," Opt. Commun. 281, 4118-4120 (2008). [CrossRef]
  33. E. Koudoumas, O. Kokkinaki, M. Konstantaki, N. Kornilios, S. Couris, S. Korovin, V. Pustovoi, and V. E. Ogluzdin, "Nonlinear optical response of silicon nanocrystals," Opt. Mater. 30, 260-263 (2007). [CrossRef]
  34. H. S. Mavi, S. Prusty, A. K. Shukla, and S. C. Abbi, "Nonlinear phenomenon in nanocrystallites produced by laser-induced etching of silicon," Opt. Commun. 226, 405-413 (2003). [CrossRef]
  35. S. Hernández, P. Pellegrino, A. Martínez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309- 064309-6 (2008). [CrossRef]
  36. C. Torres-Torres, A. López-Suárez, L. Tamayo-Rivera, R. Rangel-Rojo, A. Crespo-Sosa, J.C. Alonso, and A. Oliver, "Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon nitride film," Opt. Express,  16, 18390-18396 (2008) [CrossRef] [PubMed]
  37. M. Mayer, SIMNRA User’s Guide, Version 6.0, (Max Planck-Institute für Plasmaphysik, Garching).
  38. C. Torres-Torres, A. V. Khomenko, J. C. Cheang-Wong, L. Rodríguez-Fernández, A. Crespo-Sosa, and A. Oliver, "Absorptive and refractive nonlinearities by four-wave mixing for Au nanoparticles in ion-implanted silica," Opt. Express 15, 9248-9253 (2007). [CrossRef] [PubMed]
  39. G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandiño, J. Aguilar-Hernández, E. Hoyos, F Cruz-Gandarilla, and G. Contreras-Puentes, "Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles," Appl. Phys. Lett. 88, 041916-041916-3 (2006). [CrossRef]
  40. A. López-Suárez, J. Fandiño, G. Santana, and J. C. Alonso, "Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles," Physica E 40, 3141-3146 (2008). [CrossRef]
  41. V. B.-H. Kim, K.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G. Y. Sung, and S.-J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," APL86, 091908-091908-3 (2005).
  42. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, "Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2," Appl. Phys. Lett. 69, 2033-2035 (1996). [CrossRef]
  43. S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, Jr., and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," J. Appl. Phys. 86, 396-401 (1999). [CrossRef]
  44. C. Torres-Torres and A. V. Khomenko, "Autodifracción vectorial de dos ondas degeneradas en medios con efecto Kerr óptico," Revista Mexicana de Física. 51,162-167 (2005).
  45. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, "Dispersion of bound electron nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991). [CrossRef]
  46. M. Sheik-Bahae, A. A. Said, Tahi-Huei Wei, D. J. Hagan, E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron.  17-26, 760 (1990). [CrossRef]
  47. G. Heng-Qun and W. Qi-Ming, "Nonlinear Optical Response of nc-Si-SiO2 Films Studied with Femtosecond Four-Wave Mixing Technique," Chin. Phys. Lett.,  23, 2989-2992, (2006). [CrossRef]
  48. P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen "Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films," Opt. Express. 13, 1508-1514 (2005). [CrossRef] [PubMed]
  49. R. Rangel-Rojo, K. Kimura, H. Matsuda, M. A. Mendez-Rojas, and W. H. Watson, "Dispersion of the third-order nonlinearity of a metallo-organic compound," Opt. Commun. 228, 181-186 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited