OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10076–10081

High repetition rate UV ultrafast laser inscription of buried channel waveguides in Sapphire: Fabrication and fluorescence imaging via ruby R lines

Antonio Benayas, Daniel Jaque, Ben McMillen, and Kevin P. Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10076-10081 (2009)
http://dx.doi.org/10.1364/OE.17.010076


View Full Text Article

Enhanced HTML    Acrobat PDF (587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of buried cannel waveguides in Sapphire crystals by 250-kHz high repetition rate ultrafast laser inscription with 385 nm pulses. The propagation properties of the waveguides were studied as a function of the writing conditions. The micro-fluorescence analysis of the R lines generated by trace Cr3+ dopant in Sapphire is used to elucidate the micro-structural modifications induced in the crystal network. It is revealed that waveguide has been formed due to local dilatation of the Sapphire network generated in the surroundings of the focal volume. The refractive index increment due to the dilatation induced electronic polarizability enhancement has been estimated to be of the order of Δn ≈10−4.

© 2009 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 10, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 24, 2009
Published: June 1, 2009

Citation
Antonio Benayas, Daniel Jaque, Ben McMillen, and Kevin P. Chen, "High repetition rate UV ultrafast laser inscription of buried channel waveguides in Sapphire: Fabrication and fluorescence imaging via ruby R lines," Opt. Express 17, 10076-10081 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]
  3. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002). [CrossRef]
  4. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003). [CrossRef]
  5. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13(6), 1999–2006 (2005). [CrossRef] [PubMed]
  6. B. McMillen, K. P. Chen, H. An, S. Fleming, R. B. Balili, and D. Snoke, “Waveguiding and electro-optic chracteristics of three-dimensional waeguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93, 111106 (2008). [CrossRef]
  7. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842 (2007). [CrossRef] [PubMed]
  8. Y. Zhang, G. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire-based optical high temperature sensor for harsh environments,” Opt. Eng. 43(1), 157–164 (2004). [CrossRef]
  9. J. H. Kim, M.-K. Chen, C. E. Yang, J. Lee, S. S. Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Broadband IR supercontinuum generation using single crystal sapphire fibers,” Opt. Express 16(6), 4085–4093 (2008). [CrossRef] [PubMed]
  10. V. Apostolopoulos, L. M. B. Hickey, D. A. Sager, and J. S. Wilkinson, “Gallium-diffused waveguides in sapphire,” Opt. Lett. 26(20), 1586–1588 (2001). [CrossRef]
  11. A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22(20), 1556–1558 (1997). [CrossRef]
  12. A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide” Appl. Phys. B 75, 15–17 (2002). [CrossRef]
  13. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004). [CrossRef]
  14. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, “Pressure measurements made by the utilization of Ruby sharp-line luminescence,” Science 176(4032), 284–285 (1972). [CrossRef] [PubMed]
  15. Q. Ma and D. R. Clarke, “Stress measurements in single-crystal and polycrystalline ceramics using their optical fluorescence,” J. Am. Ceram. Soc. 76(6), 1433–1440 (1993). [CrossRef]
  16. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007). [CrossRef] [PubMed]
  17. N. M. Balzaretti, J. P. Denis, and J. A. H. da Jornada, “Variation of the refractive index and polarizability of sapphire under high pressures,” J. Appl. Phys. 73(3), 1426–1429 (1993). [CrossRef]
  18. S. C. Jones, B. A. M. Vaughan, and Y. M. Gupta, “Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis,” J. Appl. Phys. 90(10), 4990–4995 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited