OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10082–10090

Zero—group-velocity modes in chalcogenide holey photonic-crystal fibers

Ardavan F. Oskooi, J. D. Joannopoulos, and Steven G. Johnson  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10082-10090 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that a holey photonic-crystal fiber with chalcogenide-glass index contrast can be designed to have a complete gap at a propagation constant β=0 that also extends into the non-zero β region. This type of bandgap (previously identified only at index contrasts unattainable in glasses) opens up a regime for guiding zero—group-velocity modes not possible in holey fibers with the more common finger-like gaps originating from β→∞. Such modes could be used to enhance nonlinear and other material interactions, such as for hollow-core fibers in gas-sensor applications.

© 2009 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystal Fibers

Original Manuscript: March 6, 2009
Revised Manuscript: April 24, 2009
Manuscript Accepted: May 13, 2009
Published: June 1, 2009

Ardavan F. Oskooi, J. D. Joannopoulos, and Steven G. Johnson, "Zero–group-velocity modes in chalcogenide holey photonic-crystal fibers," Opt. Express 17, 10082-10090 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, "Photonic Crystal Fibers," Science 299(5605), 358-362 (2003). [CrossRef]
  2. J. Pottage, D. Bird, T. Hedley, T. Birks, J. Knight, P. Russell, and P. Roberts, "Robust photonic band gaps for hollow core guidance in PCF made from high index glass," Opt. Express 11, 2854-2861 (2003). [CrossRef] [PubMed]
  3. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, "Anomalous Dispersion Relation by Symmetry Breaking in Axially Uniform Waveguides," Phys. Rev. Lett. 92, 063,903 (2004). [CrossRef]
  4. X.-P. Feng and Y. Arawaka, "Off-plane angle dependence of photonic band gap in a two dimensional photonic crystal," IEEE J. Quantum Electron. 32, 535-542 (1996). [CrossRef]
  5. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992). [CrossRef]
  6. J. Winn, R. Meade, and J. Joannopoulos, "Two-dimensional Photonic Band-gap Materials," J. Mod. Opt. 41, 257-273 (1994). [CrossRef]
  7. A. Maradudin and A. McGurn, "Out of Plane Propagation of Electromagnetic Waves in a Two-dimensional Periodic Dielectric Medium," J. Mod. Opt. 41, 275-284 (1994). [CrossRef]
  8. T. Haas, A. Hesse, and T. Doll, "Omnidirectional two-dimensional photonic crystal band gap structures," Phys. Rev. B 73(045130) (2006).
  9. G. Benoit and Y. Fink, "MIT electronic database of optical properties," http://mit-pbg.mit.edu/ Pages/DataBase.html (2006).
  10. J. Nishii, T. Yamashita, and T. Yamagishi, "Chalcogenide glass fiber with a core—cladding structure," Appl. Opt. 28, 5122-5127 (1989). [CrossRef] [PubMed]
  11. T. Monro, Y. West, D. Hewak, N. Broderick, and D. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  12. K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002). [CrossRef]
  13. V. V. R. K. Kumar, A. George, J. Knight, and P. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003). [CrossRef] [PubMed]
  14. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, "Fabrication of complex structures of Holey Fibers in Chalcogenide glass," Opt. Express 14, 1280-1285 (2006). [CrossRef] [PubMed]
  15. J. L. Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, "Light guidance in new chalcogenide holey fibres from GeGaSbS glass," Mater. Res. Bull. 41, 1303 - 1309 (2006). [CrossRef]
  16. J. C. Knight, J. Broeng, T. A. Birks, and P. S.-J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  17. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  18. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  19. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of non-linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  20. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and Modeling of a Photonic Crystal Fiber Gas Sensor," Appl. Opt. 42, 3509-3515 (2003). [CrossRef] [PubMed]
  21. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  22. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  23. S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005). [CrossRef] [PubMed]
  24. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003). [CrossRef] [PubMed]
  25. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, "High power air-clad photonic crystal fibre laser," Opt. Express 11, 48-53 (2003). [CrossRef] [PubMed]
  26. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  27. J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. 31, 1235-1237 (2006). [CrossRef] [PubMed]
  28. M. Soljačić, E. Lidorikis, M. Ibanescu, S. Johnson, J. Joannopoulos, and Y. Fink, "Optical bistability and cutoff solitons in photonic bandgap fibers," Opt. Express 12, 1518-1527 (2004). [CrossRef] [PubMed]
  29. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253,902 (2001). [CrossRef]
  30. Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  31. M. Settle, R. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  32. T. Baba, "Slow light in photonic crystals," Nature Photonics 2, 465-473 (2008). [CrossRef]
  33. A. Bamberger and A. S. Bonnet, "Mathematical Analysis of the Guided Modes of an Optical Fiber," J. Math. Anal. 21, 1487-1510 (1990).
  34. C. Jiang, M. Ibanescu, J. Joannopoulos, and M. Soljacic, "Zero-group-velocity modes in longitudinally uniform waveguides," Appl. Phys. Lett. 93, 241,111 (2008). [CrossRef]
  35. T. A. Birks, J. C. Knight, and P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  36. M. Ibanescu, S. G. Johnson, M. Soljačić, J. D. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, "Analysis of mode structure in hollow dielectric waveguide fibers," Phys. Rev. E 67, 046,608 (2003). [CrossRef]
  37. M. Soljačić, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, and Y. Fink, "Optical bistability in axially modulated OmniGuide fibers," Opt. Lett. 28, 516-518 (2003). [CrossRef] [PubMed]
  38. R. Chern, C. Chang, C. Chang, and R. Hwang, "Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration," Phys. Rev. E 68(026704) (2003).
  39. M. Yan and P. Shum, "Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design," Opt. Lett. 30, 1920-1922 (2005). [CrossRef] [PubMed]
  40. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  41. T. Inui, Y. Tanabe, and Y. Onodera, Group theory and its applications in physics (Springer, 1990). [CrossRef]
  42. H. Kim, M. Digonnet, G. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers," Opt. Express 12, 3436-3442 (2004). [CrossRef] [PubMed]
  43. J. West, C. Smith., N. Borrelli, D. Allan, and K. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004). [CrossRef] [PubMed]
  44. K. Saitoh, N. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  45. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  46. S. Johnson, P. Bienstman, M. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66(066608) (2002).
  47. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  48. A. Oskooi, L. Zhang, Y. Avniel, and S. Johnson, "The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers," Opt. Express 16, 11,376-11,392 (2008). [CrossRef]
  49. A. Mutapcic, S. Boyd, A. Farjadpour, S. Johnson, and Y. Avniel, "Robust design of slow-light tapers in periodic waveguides," Engineering Optimization 41, 365-384 (2009). [CrossRef]
  50. E. Magi, P. Steinvurzel, and B. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004). [CrossRef] [PubMed]
  51. B. Lee, J. Eom, J. Kim, D. Moon, U.-C. Park, and G.-H. Yang, "Photonic crystal fiber coupler," Opt. Lett. 27, 812-814 (2002). [CrossRef]
  52. A. Mekis and J. Joannopoulos, "Tapered Couplers for Efficient Interfacing Between Dielectric and Photonic Crystl Waveguides," J. Lightwave Tech. 19, 861-865 (2001). [CrossRef]
  53. A. Talneau, P. Lalanne, M. Agio, and C. Soukoulis, "Low-reflection photonic-crstal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002). [CrossRef]
  54. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited