OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10126–10135

Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission

Liyong Jiang, Haipeng Li, Wei Jia, Xiangyin Li, and Zexiang Shen  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10126-10135 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1092 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we use the finite-difference time-domain method in conjunction with a genetic algorithm (GA) to design a photonic crystal waveguide with gratinglike surface added for highly-efficient directional emission. By placing a detector at different locations in the output field, we have obtained both on-axis and off-axis highly-efficient directional emission designs with the help of GA. The interference of light emitted from the outlet of waveguide and surfaces modes in gratinglike surface is believed to account for the directional beaming effect in our designs.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 9, 2009
Revised Manuscript: May 2, 2009
Manuscript Accepted: May 4, 2009
Published: June 2, 2009

Liyong Jiang, Haipeng Li, Wei Jia, Xiangyin Li, and Zexiang Shen, "Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission," Opt. Express 17, 10126-10135 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402 (2004). [CrossRef]
  2. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Müller, R. B. Wehrspohn, U. Gösele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  3. S. K. Morrison, and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005). [CrossRef]
  4. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, "Topology optimization of a photonic crystal waveguide termination to maximize directional emission," Appl. Phys. Lett. 86, 111114 (2005). [CrossRef]
  5. D. Gan, Y. Qi, X. Yang, J. Ma, J. Cui, C. Wang, and X. Luo, "Improved directional emission by resonant defect cavity modes in photonic crystal waveguide with corrugated surface," Appl. Phys. B 93, 849-852 (2008). [CrossRef]
  6. C.-C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tünnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428 (2006). [CrossRef] [PubMed]
  7. D. H. Tang, L. X. Chen, and W. Q. Ding, "Efficient beaming from photonic crystal waveguides via self-collimation effect," Appl. Phys. Lett. 89, 131120 (2006). [CrossRef]
  8. Y. L. Zhang, Y. Zhang, and B. J. Li, "Highly-efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides," Opt. Express 15, 9281-9286 (2007). [CrossRef] [PubMed]
  9. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, "Enhanced transmission and directional emission via coupled-resonator optical waveguides," Appl. Phys. B 86, 327-321 (2007). [CrossRef]
  10. Z. F. Li, A. Koray, and O. Ekmel, "Highly directional emission from photonic crystals with a wide bandwidth," Appl. Phys. Lett. 91, 121105 (2007). [CrossRef]
  11. Q. Wang, Y. P. Cui, C. C. Yan, L. L. Zhang, and J. Y. Zhang, "Highly efficient directional emission using a coupled multi-channel structure to a photonic crystal waveguide with surface modification," J. Phys. D: Appl. Phys. 41, 105110 (2008). [CrossRef]
  12. H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008). [CrossRef]
  13. H. B. Chen, X. S. Chen, J. Wang, and W. Lu, "Tunable beam direction and transmission of light using photonic crystal waveguide," Physica B 403, 4301-4304 (2008). [CrossRef]
  14. W. Śmigaj, "Model of light collimation by photonic crystal surface modes," Phys. Rev. B 75, 205430 (2007). [CrossRef]
  15. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975).
  16. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).
  17. L. F. Shen, Z. Ye, and S. L. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 0351091 (2003). [CrossRef]
  18. L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Appl. Phys. Lett. 84, 4460-4462 (2004). [CrossRef]
  19. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004). [CrossRef] [PubMed]
  20. J. Smajic, C. Hafner, and D. Erni, "Optimization of photonic crystal structures," J. Opt. Soc. Am. A 21, 2223-2232 (2004). [CrossRef]
  21. R. P. Drupp, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization," Appl. Phys. Lett. 86, 081102 (2005). [CrossRef]
  22. A. Husakov, and J. Herrmann, "Chirped multilayer hollow waveguides with broadband transmission," Opt. Express 17, 3025-3035 (2009). [CrossRef]
  23. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston London, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited