OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10155–10167

Plasmon polaritons in the near infrared on fluorine doped tin oxide films

Lorenzo Dominici, Francesco Michelotti, Thomas M. Brown, Andrea Reale, and Aldo Di Carlo  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10155-10167 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we investigate plasmon polaritons in fluorine doped tin oxide (FTO) films. By fitting reflectance and transmittance measurements as a function of wavelength λ ∊ [1.0µm,2.5µm] we derive a Drude dispersion relation of the free electrons in the transparent conducting oxide films. Then we compute the dispersion curves for the bulk and surface modes together with a reflectance map over an extended wavelength region (λ ⇑ 10µm). Although the surface polariton dispersion for a single FTO/air interface when neglecting damping should appear clearly in the plots in the considered region (since it is supposedly far and isolated from other resonances), a complex behaviour can arise. This is due to different characteristic parameters, such as the presence of a finite extinction coefficient, causing an enlargement and backbending of the feature, and the low film thickness, via coupling between the modes from both the glass/FTO and FTO/air interfaces. Taking into account these effects, computations reveal a general behaviour for thin and absorbing conducting films. They predict a thickness dependent transition region between the bulk polariton and the surface plasmon branches as previously reported for indium tin oxide. Finally, attenuated total reflection measurements vs the incidence angle are performed over single wavelengths lines R(θ) (λ=0.633,0.830,1.300,1.550µm) and over a two dimensional domain R(θ,λ) in the near infrared region λ ∊ [1.45µm,1.59µm]. Both of these functions exhibit a feature which is attributed to a bulk polariton and not to a surface plasmon polariton on the basis of comparison with spectrophotometer measurements and modeling. The predicted range for the emergence of a surface plasmon polariton is found to be above λ≥2.1µm, while the optimal film thickness for its observation is estimated to be around 200nm.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Optics at Surfaces

Original Manuscript: March 17, 2009
Revised Manuscript: April 23, 2009
Manuscript Accepted: April 23, 2009
Published: June 2, 2009

Lorenzo Dominici, Francesco Michelotti, Thomas M. Brown, Andrea Reale, and Aldo Di Carlo, "Plasmon polaritons in the near infrared on fluorine doped tin oxide films," Opt. Express 17, 10155-10167 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons (North-Holland, Amsterdam, 1982).
  2. A. D. Boardman, ed., Electromagnetic Surface Modes (Springer, Berlin, 1982).
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005). [CrossRef]
  4. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel, and A. V. Zayats, "Dispersing Light with Surface Plasmon Polaritonic Crystals," Phys. Rev. Lett. 99, 083901 1-4 (2007). [CrossRef]
  5. J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006). [CrossRef] [PubMed]
  6. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, "Light outcoupling efficiency of top-emitting organic light-emitting diodes," Appl. Phys. Lett. 84, 2986-2988 (2004). [CrossRef]
  7. L. Tutt and J. F. Revelli, "Distribution of radiation from organic light-emitting diode structures with wavelengthscale gratings as a function of azimuth and polar angles," Opt. Lett. 33, 503-505 (2008). [CrossRef] [PubMed]
  8. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Eder, S. Sax, and E. J. W. List, "Surface plasmon coupled electroluminescent emission," Appl. Phys. Lett. 92, 103304 1-3 (2008). [CrossRef]
  9. K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008). [CrossRef] [PubMed]
  10. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, "Surface plasmon increase absorption in polymer photovoltaic cells," Appl. Phys. Lett. 91, 113514 1-3 (2007). [CrossRef]
  11. C. Hagglund, M. Zach, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 1-3 (2008). [CrossRef]
  12. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007). [CrossRef]
  13. V. N. Konopsky and E. V. Alieva, "Long-range plasmons in lossy metal films on photonic crystal surfaces," Opt. Lett. 34, 479-481 (2009). [CrossRef] [PubMed]
  14. B. E. Sernelius, Surface Modes in Physics (Wiley VCH, Weinheim, 2001). [CrossRef]
  15. J. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006). [CrossRef] [PubMed]
  16. A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas, "Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface," J. Opt. Soc. Am. B 25, 1016-1024 (2008). [CrossRef]
  17. <jrn>. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, "Tamm plasmon polaritons: Slow and spatially compact light," Appl. Phys. Lett. 92, 251112 1-3 (2008).</jrn> [CrossRef]
  18. F. Tao, Hu.-F. Zhang, X.-Hu. Yang, and D. Cao, "Surface plasmon polaritons of the metamaterial four-layered structures," J. Opt. Soc. Am. B 26, (1) 50-59 (2009). [CrossRef]
  19. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells," Biophys. J. 90, 2592-2599 (2006). [CrossRef] [PubMed]
  20. M. Y. C. Xu, M. Z. Alam, A. J. Zilkie, K. Zeaiter, and J. S. Aitchison, "Surface plasmon polaritons mediated by ITO at near infrared wavelength," CLEO/QELS 2008 Conference Digest, JThA132 (2008).
  21. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007). [CrossRef]
  22. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, "Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm," Opt. Lett. 34, 839-841 (2009). [CrossRef] [PubMed]
  23. R. B. Pettit, J. Silcox, and R. Vincent, "Measurement of surface-plasmon dispersion in oxidized aluminum films," Phys. Rev. B 11, 3116-3123 (1975). [CrossRef]
  24. M. Sarrazin and J.-P. Vigneron, "Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array," Phys. Rev. B 71, 075404 1-5 (2005). [CrossRef]
  25. P. Robusto and R. Braunstein, "Optical measurements of the surface plasmon of indium-tin oxide," Phys. Stat. Sol. 119, 155-168 (1990). [CrossRef]
  26. H. Brewer and S. Franzen, "Calculation of the electronic and optical properties of indium tin oxide by density functional theory," Chem. Phys. 300, 285-293 (2004). [CrossRef]
  27. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, "Surface plasmon resonance in conducting metal oxides," J. Appl. Phys. 100, 054905 1-4 (2006). [CrossRef]
  28. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. E. Aspnes, J.-P. Maria, and S. Franzen, "Dependence of plasmon polaritons on the thickness of indium tin oxide thin films," J. Appl. Phys. 103, 093108 1-6 (2008). [CrossRef]
  29. S. Franzen, "Surface Plasmon Polaritons and Screeened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold," J. Phys. Chem. C 112, 6027-6032 (2008). [CrossRef]
  30. S. Szunerits, X. Castel, and R. Boukherroub, "Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity," J. Phys. Chem. C 112, 15813-15817 (2008). [CrossRef]
  31. B. Stjerna, E. Olsson, and C. G. Granqvist, "Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo," J. Appl. Phys. 76, 3797-3817 (1994). [CrossRef]
  32. S. H. Brewer and S. Franzen, "Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity," J. Alloys Compd. 338, 73-79 (2002). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  34. P. Yeh, Optical Waves in Layered Media (Wiley VCH, Weinheim 1988).
  35. We put a note here about the physical quantities used. In general, it is possible to represent the map in terms of θamp; or k on one axis (or also n0sin θ), and in terms of λ or ω on the other. Experimental maps often are (θ -λ) or (θ-ω), while theoretical ones can be (k-ω) when representing the light dispersion curves. When passing from this last kind of visualization to another, an SPP typical dispersion would be somehow differently displayed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (669 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited