OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10168–10176

Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response

Sotiris Psilodimitrakopoulos, David Artigas, Guadalupe Soria, Ivan Amat-Roldan, Anna M. Planas, and Pablo Loza-Alvarez  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10168-10176 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the second harmonic generation (SHG) response to polarization and subsequent data analysis is used to discriminate, in the same image, different SHG source architectures with pixel resolution. This is demonstrated in a mammalian tissue containing both skeletal muscle and fibrilar collagen. The SHG intensity variation with the input polarization (PSHG) is fitted pixel by pixel in the image using an algorithm based on a generalized biophysical model. The analysis provides the effective orientation, θe , of the different SHG active structures (harmonophores) at every pixel. This results in a new image in which collagen and muscle are clearly differentiated. In order to quantify the SHG response, the distribution of θe for every harmonophore is obtained. We found that for collagen, the distribution was centered at θe =42.7° with a full width at half maximum of Δθ=5.9° while for muscle θe =65.3°, with Δθ=7.7°. By comparing these distributions, a quantitative measurement of the discrimination procedure is provided.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(110.5405) Imaging systems : Polarimetric imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 17, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 20, 2009
Published: June 2, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Sotiris Psilodimitrakopoulos, David Artigas, Guadalupe Soria, Ivan Amat-Roldan, Anna M. Planas, and Pablo Loza-Alvarez, "Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response," Opt. Express 17, 10168-10176 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, (Springer, Berlin, 2006). [CrossRef]
  2. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248(4951), 73-76 (1990). [CrossRef]
  3. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, "Fluorescence lifetime imaging," Anal. Biochem. 202(2), 316-330 (1992). [CrossRef]
  4. T. Förster, "Zwischenmolekulare Energiewanderung und Fluoreszenz," Ann. Phys. 437(1-2), 55-75 (1948). [CrossRef]
  5. J. E. Aubin, "Autofluorescence of viable cultured mammalian cells," J. Histochem. Cytochem. 27(1), 36-43 (1979). [CrossRef]
  6. Y. R. Shen, "Surface properties probed by second-harmonic and sum-frequency generation," Nature 337(6207), 519-525 (1989). [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70(8), 922-924 (1997). [CrossRef]
  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-stokes raman scattering," Phys. Rev. Lett. 82(20), 4142-4145 (1999). [CrossRef]
  9. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three - dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82(1), 493-508 (2002). [CrossRef]
  10. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80(3), 1568-1574 (2001). [CrossRef]
  11. R. W. Boyd, ed., Nonlinear Optics, (Academic, San Diego, CA., 1992).
  12. S. Plotnikov, V. Juneja, A. Isaacson, W. Mohler, and P. Campagnola, "Optical Clearing for Improved Contrast in Second Harmonic Generation Imaging of Skeletal Muscle," Biophys. J. 90(1), 328-339 (2006). [CrossRef]
  13. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, A. Knoesen; I. R. Mendoza, "Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen," Biophys. J. 93(12), 4433-4444 (2007). [CrossRef]
  14. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, "Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy," Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081-7086 (2003). [CrossRef]
  15. A. C. Kwan, D. A. Dombeck, and W. W. Webb, "Polarized microtubule arrays in apical dendrites and axons," Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370-11375 (2008). [CrossRef]
  16. S. Psilodimitrakopoulos, I. Amat-Roldan, S. Santos, and M. Mathew, A. Thayil K. N.D. Zalvidea, D. Artigas, P. Loza-Alvarez, "Starch granules as a probe for the polarization at the sample plane of a high resolution multiphoton microscope," Proc. SPIE 6860, 68600E-68600E-11 (2008). [CrossRef]
  17. S. Roth, and I. Freund, "Second harmonic generation in collagen," J. Chem. Phys. 70(4), 1637-1643 (1979). [CrossRef]
  18. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82(6), 3330-3342 (2002). [CrossRef]
  19. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, "Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86(6), 3914-3922 (2004). [CrossRef]
  20. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, "Second harmonic imaging of intrinsic signals in muscle fibers in situ," J. Biomed. Opt. 9(5), 882-892 (2004). [CrossRef]
  21. F. Tiaho, G. Recher, and D. Rouede, "Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy," Opt. Express 15(19), 12286-12295 (2007). [CrossRef]
  22. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, "Collagen and myosin characterization by orientation field second harmonic microscopy," Opt. Express 16(20), 16151-16165 (2008). [CrossRef]
  23. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy," J. Biomed. Opt. 13(4), 044020 (2008). [CrossRef]
  24. X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, "Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma," Opt. Express 16(3), 1846-1859 (2008). [CrossRef]
  25. M. Wang, K. M. Reiser, and A. Knoesen, "Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies," J. Opt. Soc. Am. A 24(11), 3573-3586 (2007). [CrossRef]
  26. M. Wang, and A. Knoesen, "Rotation- and scale-invariant texture features based on spectral moment invariants," J. Opt. Soc. Am. A 24(9), 2550-2557 (2007). [CrossRef]
  27. S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, "In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy," J. Biomed. Opt. 14(1), 014001 (2009). [CrossRef]
  28. S. W. Chu, S. P. Tai, C. K. Sun, and C. H. Lin, "Selective imaging in second-harmonic generation microscopy by polarization manipulation," Appl. Phys. Lett. 91(10), 103903 (2007). [CrossRef]
  29. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, "Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy," J. Microsc. 230(Pt 1), 70-75 (2008). [CrossRef]
  30. K. Beck, and B. Brodsky, "Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil," J. Struct. Biol. 122(1-2), 17-29 (1998). [CrossRef]
  31. J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, "Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution," Science 266(5182), 75-81 (1994). [CrossRef]
  32. S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, "Selective imaging in second-harmonic-generation microscopy with anisotropic radiation," J. Biomed. Opt. 14(1), 010504 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited