OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10223–10230

Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10223-10230 (2009)
http://dx.doi.org/10.1364/OE.17.010223


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doping-tunable mid-infrared extraordinary transmission is demonstrated from a periodic metal hole array patterned on n-InSb. The polarization-dependent transmission was measured at room temperature and 77 K. In addition, the extraordinary transmission was measured for incident angles from 0° to 35° in 5° steps. A fundamental resonance shift of ~123 cm-1 (1.4 µm) is observed by varying the doping from 1×1016 to 2×1018 cm-3. The calculated transmission resonances were in good agreement with the experimental results. This suggests that InSb semiconductor-based plasmonic structures may be suitable for a variety of tunable mid-infrared device applications.

© 2009 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(240.6690) Optics at surfaces : Surface waves
(160.1245) Materials : Artificially engineered materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 8, 2009
Revised Manuscript: May 19, 2009
Manuscript Accepted: May 26, 2009
Published: June 3, 2009

Citation
B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, "Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb," Opt. Express 17, 10223-10230 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers," J. Chem. Phys. B 107, 11871-79 (2003). [CrossRef]
  3. K. D. Moller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, and P. Lalanne, "Thin and thick cross shaped metal grids," Infrared Phys. Technol. 40, 475-478 (1999). [CrossRef]
  4. R. Ulrich, "Modes of propagation on an open periodic waveguide for the far infrared," in Proceedings Symp. Opt. Acoust. Microelectron., (Polytechnic Press of the Polytechnic Institute of New York. New York, 1974), pp. 359-376.
  5. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X , Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2007). [CrossRef]
  7. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003). [CrossRef] [PubMed]
  8. N. Fang and X. Zhang, "Imaging properties of metamaterials superlens, "Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  9. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  10. N. E. Glass, A. A. Maradudin, and V. Celli, "Diffraction of light by a bigrating: Surface polariton resonances and electric field enhancements," Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5150-3 (1983). [CrossRef]
  11. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  12. G. C. Schatz, M. Young, and R. P. V. Duyne, "Electromagnetic mechanism of SERS,"in Surface Enhanced Raman Scattering: Physics and Applications, Springer Topics in Applied Physics, K. Kneipp, M. Moskovits, H. Kneipp, ed., (Springer, New York, 2006) [CrossRef] [PubMed]
  13. P. Kambhampati, C. M. Child, M. C. Foster, and A. Campion, "On the chemical mechanism of surface enhanced Raman scattering: experiment and theory," J. Chem. Phys. 108, 5013-5026 (1998). [CrossRef]
  14. J. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, "Metal films with arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding," J. Chem. Phys. C 111, 17459-17472 (2007). [CrossRef]
  15. Y. H. Ye and J. Y. Zhang, "Middle-infrared transmission enhancement through periodically perforated metal films," Appl. Phys. Lett. 84, 2977-9 (2004). [CrossRef]
  16. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8672-5 (2005).
  17. S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, "Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmon to waveguide transmission," Appl. Phys. Lett. 85, 1472-5 (2004). [CrossRef]
  18. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, "Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array," Phys. Rev. Lett. 101, 87401-4 (2008). [CrossRef]
  19. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101-10 (2005) [CrossRef]
  20. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999). [CrossRef]
  21. P. Hewageegana and V. Apalkov, "Quantum dot photodetectors with metallic diffraction grating: Surface plasmons and strong absorption enhancement," Physica E 40, 2817-2822 (2008). [CrossRef]
  22. D. Wasserman, E. A. Shaner and J. G. Cederberg, "Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings," App. Phys. Lett. 90, 1911021-3 (2007). [CrossRef]
  23. O. Manasreh, Semiconductor heterojunctions and nanostructures, K. P. McCombs eds., (McGraw-Hill, New York, 2005).
  24. E. A. Shaner, J. G. Cederberg and D. Wasserman, "Electrically tunable extraordinary optical transmission gratings," Appl. Phys. Lett. 91, 1811101-3 (2007). [CrossRef]
  25. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  26. W. A. Murray, S. Astilean, and W. L. Barnes, "Transition from localized surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array," Phys. Rev. B 69, 1654071-7 (2004). [CrossRef]
  27. T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss Mechanisms in mid-indfrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009). [CrossRef] [PubMed]
  28. Y. Chen, Y. Wang, Y. Zhang, and S. Liu, "Numerical investigation of the transmission enhancement through subwavelength hole array," Opt. Commun. 274, 236-240 (2007). [CrossRef]
  29. C. Sauvan, C. Billaudeau, S. Collin, N. Bardou, F. Pardo, J. L. Pelouard, and P. Lalanne, "Surface plasmon coupling on metallic film perforated by two-dimensional rectangular hole array," Appl. Phys. Lett. 92, 111251-3 (2008). [CrossRef]
  30. A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003). [CrossRef]
  31. C. Kittel, Introduction to Solid State Physics, S. Johnson, ed., (J. Wiley & Sons Inc., New York 1986).
  32. W. Zawadski, "Electron transport phenomena in small-gap semiconductors," Adv. Phys. 23, 435-522 (1974). [CrossRef]
  33. E. Litwin-Staszewska, W. Szymanska, and P. Piotrzkowski, "The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures," Phys. Status Solidi b 106, 551-559 (1981). [CrossRef]
  34. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401-4 (2004). [CrossRef] [PubMed]
  35. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited