OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10327–10334

Channel plasmon polaritons guided by graded gaps: closed-form solutions

Sergey I. Bozhevolnyi and Khachatur V. Nerkararyan  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 10327-10334 (2009)
http://dx.doi.org/10.1364/OE.17.010327


View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the effective-index approximation along with the explicit expression for the propagation constant of gap surface plasmons established recently [Opt. Express 16, 2676-2684 (2008)], we develop an analytic description of channel plasmon polariton (CPP) modes guided along V-grooves and gaps between two metal cylindrical surfaces. The results obtained for V-grooves are compared with those reported previously. Dispersion of the main CPP characteristics is calculated for air-gold configurations, allowing one to design graded-gap waveguides for the single-mode operation supporting well-confined fundamental CPP modes in a broad wavelength range.

© 2009 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 12, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: May 31, 2009
Published: June 4, 2009

Citation
Sergey I. Bozhevolnyi and Khachatur V. Nerkararyan, "Channel plasmon polaritons guided by graded gaps: closed-form solutions," Opt. Express 17, 10327-10334 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10327


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits, (Pan Stanford Publishing, Singapore, 2008).
  2. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  3. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14(20), 9467–9476 (2006). [CrossRef] [PubMed]
  4. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  5. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005). [CrossRef] [PubMed]
  6. K. Tanaka, T. T. Minh, and M. Tanaka, “Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines,” Opt. Express 17(2), 1078–1092 (2009). [CrossRef] [PubMed]
  7. S. H. Chang, T. C. Chiu, and C.-Y. Tai, “Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides,” Opt. Express 15(4), 1755–1761 (2007). [CrossRef] [PubMed]
  8. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002). [CrossRef]
  9. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85(26), 6323–6325 (2004). [CrossRef]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  12. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007). [CrossRef] [PubMed]
  13. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  14. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton propagation in nanoimprinted V-groove waveguides,” Opt. Lett. 33(23), 2800–2802 (2008). [CrossRef] [PubMed]
  15. E. Moreno, F. J. García-Vidal, S. G. Rodrigo, L. Martín-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006). [CrossRef] [PubMed]
  16. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]
  17. J. Dintinger and O. J. F. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17(4), 2364–2374 (2009). [CrossRef] [PubMed]
  18. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16(1), 113–118 (1977). [CrossRef] [PubMed]
  19. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  20. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005). [CrossRef] [PubMed]
  21. H. Kogelnik and V. Ramaswamy, “Scaling rules for thin-film optical waveguides,” Appl. Opt. 13, 1857- (1974).
  22. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  23. E. Merzbacher, Quantum Mechanics (Wiley, 1998).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  25. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005). [CrossRef]
  26. L. D. Landau, and E. M. Lifshitz, Quantum Mechanics – Non-relativistic Theory (Pergamon Press, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited