OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10335–10343

Angular emission characteristics of quantum cascade spiral microlasers

Martina Hentschel, Tae-Yoon Kwon, Mikhail A. Belkin, Ross Audet, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10335-10343 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform ray and wave simulations of passive and active spiral-shaped optical microcavities, comparing our results to experimental data obtained with mid-infrared quantum cascade spiral microlasers. Focusing on the angular emission characteristics, we find that both ray and wave simulations are consistent with the experimental data, showing richly-featured, multidirectional far-field emission patterns in the case of uniform pumping and TM-polarized light. Active cavity simulations using the Schrödinger-Bloch model indicate that selective pumping of the quantum cascade spiral microlasers near the resonator boundary will yield unidirectional laser emission.

© 2009 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3410) Lasers and laser optics : Laser resonators
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 27, 2009
Revised Manuscript: April 28, 2009
Manuscript Accepted: May 10, 2009
Published: June 5, 2009

Martina Hentschel, Tae-Yoon Kwon, Mikhail A. Belkin, Ross Audet, and Federico Capasso, "Angular emission characteristics of quantum cascade spiral microlasers," Opt. Express 17, 10335-10343 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars," Appl. Phys. Lett. 83, 1710-1712 (2003). [CrossRef]
  2. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, "Current-injection spiralshaped microcavity disk laser diodes with unidirectional emission," Appl. Phys. Lett. 84, 2485-2487 (2004). [CrossRef]
  3. T. Ben-Messaoud and J. Zyss, "Unidirectional laser emission from polymer-based spiral microdisks," Appl. Phys. Lett. 86, 241110 (2005). [CrossRef]
  4. A. Fujii, T. Nishimura, Y. Yoshida, K. Yoshino, and M. Ozaki, "Unidirectional laser emission from spiral microcavity utilizing conducting polymer," Jpn. J. Appl. Phys. 44, L1091-L1093 (2005). [CrossRef]
  5. A. Tulek and Z. V. Vardeny, "Unidirectional laser emission fromπ-conjugated polymer microcavities with broken symmetry," Appl. Phys. Lett. 90, 161106 (2007). [CrossRef]
  6. Ch.-M. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, "Continuous wave operation of a spiral-shaped microcavity laser," Appl. Phys. Lett. 92, 131110 (2008). [CrossRef]
  7. M. Hentschel and T.-Y. Kwon, "Designing and understanding directional emission from spiral microlasers," Opt. Lett. 34, 163-165 (2009). [CrossRef] [PubMed]
  8. R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, "Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators," Appl. Phys. Lett. 91, 131106 (2007). [CrossRef]
  9. A. Fujii, T. Takashima, N. Tsujimoto, T. Nakao, Y. Yoshida, and M. Ozaki, "Fabrication and unidirectional laser emission properties of asymmetric microdisks based on Poly(p-phenylenevinylene) Derivative," Jpn. J. Appl. Phys. 45, L833-L866 (2006). [CrossRef]
  10. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and Ch.-M. Kim, "Quasiscarred Resonances in a Spiral- Shaped Microcavity," Phys. Rev. Lett. 93, 164102 (2004). [CrossRef] [PubMed]
  11. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi and Ch.-M. Kim, "Ray and wave dynamical properties of a spiral-shaped dielectric microcavity," J. Phys. A 41, 275102 (2008). [CrossRef]
  12. M. Hentschel and M. Vojta, "Multiple beam interference in a quadrupolar glass fiber," Opt. Lett. 26, 1764-1766 (2001). [CrossRef]
  13. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, "Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers," J. Opt. Soc. Am. B 21, 923-934 (2004). [CrossRef]
  14. S. Shinohara and T. Harayama, "Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity," Phys. Rev. E 75, 036216 (2007). [CrossRef]
  15. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, "Classical Phase Space Revealed by Coherent Light," Phys. Rev. Lett. 98, 033902 (2007). [CrossRef] [PubMed]
  16. S.-B. Lee, J. Yang, S. Moon, J.-H. Lee, K. An, J.-B. Shim, H.-W. Lee, and S. W. Kim, "Universal output directionality of single modes in a deformed microcavity," Phys. Rev. A 75, 011802 (2007). [CrossRef]
  17. M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny, "Directional emission of stadium-shaped microlasers," Phys. Rev. A 75, 033806 (2007). [CrossRef]
  18. T. Harayama, S. Sunada, and K. Ikeda, "Theory of two-dimensional microcavity lasers," Phys. Rev. A 72, 013803 (2005). [CrossRef]
  19. J. Wiersig and M. Hentschel, "Combining Directional Light Output and Ultralow Loss in Deformed Microdisks," Phys. Rev. Lett. 100, 033901 (2008). [CrossRef] [PubMed]
  20. M. Hentschel and H. Schomerus, "Fresnel laws at curved dielectric interfaces of microresonators," Phys. Rev. E 65, 045603(R) (2002). [CrossRef]
  21. H. Schomerus and M. Hentschel, "Correcting Ray Optics at Curved Dielectric Microresonator Interfaces: Phase- Space Unification of Fresnel Filtering and the Goos-H¨anchen Shift," Phys. Rev. Lett. 96, 243903 (2006). [CrossRef] [PubMed]
  22. S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, "Scarred resonances and steady probability distribution in a chaotic microcavity," Phys. Rev. A 72, 061801(R) (2005). [CrossRef]
  23. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, "Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators," Opt. Lett. 27, 824-826 (2002). [CrossRef]
  24. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A: Pure Appl. Opt. 5, 53-60 (2003). [CrossRef]
  25. Note that they can be understood as normal scarred resonances in the framework of an amended ray optics where the Fresnel filtering and Goos-H¨anchen corrections are included, see E. G. Altmann, G. Del Magno, and M. Hentschel, "Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics," Europhys. Lett. 84, 10008 (2008). [CrossRef]
  26. S. Rim, T.-Y. Kwon, J. Cho, and Ch.-M. Kim, "Quantal characteristics of a spiral shaped billiard," submitted toPhys. Rev. E.
  27. T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, Ch.-M. Kim, and Y.-J. Park, "Lasing modes in a spiral-shaped dielectric microcavity," Opt. Lett. 31, 1250-1252 (2006). [CrossRef] [PubMed]
  28. The data is taken at a circle of radius R = 3r0 and corresponds, strictly speaking, to the mid-field characteristics. The far-field profiles can be expected to be very similar to the data shown.
  29. V. Moreau, M. Bahriz, J. Palomo, L. R. Wilson, A. B. Krysa, C. Sirtori, D. A. Austin, J. W. Cockburn, J. S. Roberts, and R. Colombelli, "Optical mode control of surface-plasmon quantum cascade lasers," IEEE Photon. Technol. Lett. 18, 2499-2501 (2006). [CrossRef]
  30. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007). [CrossRef] [PubMed]
  31. N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheyer, Jr., "Single-mode low-loss chalcogenide glass waveguides for the mid-infrared," Opt. Lett. 31, 1860-1862 (2006). [CrossRef] [PubMed]
  32. N. Tsujimoto, T. Takashima, T. Nakao, K. Masuyama, A. Fujii, and M. Ozaki, "Laser emission from spiralshaped microdisc with waveguide of conducting polymer," J. Phys. D: Appl. Phys. 40, 1669-1672 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited