OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 10393–10398

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber

Bertrand Kibler, Tadeusz Martynkien, Marcin Szpulak, Christophe Finot, Julien Fatome, Jan Wojcik, Waclaw Urbanczyk, and Stefan Wabnitz  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 10393-10398 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.

© 2009 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: April 21, 2009
Revised Manuscript: May 28, 2009
Manuscript Accepted: June 1, 2009
Published: June 5, 2009

Bertrand Kibler, Tadeusz Martynkien, Marcin Szpulak, Christophe Finot, Julien Fatome, Jan Wojcik, Waclaw Urbanczyk, and Stefan Wabnitz, "Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber," Opt. Express 17, 10393-10398 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004). [CrossRef] [PubMed]
  2. G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007). [CrossRef]
  3. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Dispersion design of all-solid photonic bandgap fiber,” J. Opt. Soc. Am. B 24(11), 2899–2905 (2007). [CrossRef]
  4. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002). [CrossRef]
  5. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]
  6. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007). [CrossRef] [PubMed]
  7. A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006). [CrossRef] [PubMed]
  8. L. Jin, Z. Wang, Q. Fang, B. Liu, Y. Liu, G. Kai, X. Dong, and B.-O. Guan, “Bragg grating resonances in all-solid bandgap fibers,” Opt. Lett. 32(18), 2717–2719 (2007). [CrossRef] [PubMed]
  9. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004). [CrossRef]
  10. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  11. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005). [CrossRef] [PubMed]
  12. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear spectral broadening in solid-core Bragg fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007). [CrossRef]
  13. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985). [CrossRef] [PubMed]
  14. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]
  15. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005). [CrossRef]
  16. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited