OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9491–9502

Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9491-9502 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a framework to understand and predict the far-field emission in terahertz frequency photonic-crystal quantum cascade lasers. The devices, which employ a high-performance three-well active region, are lithographically tunable and emit in the 104-120 µm wavelength range. A peak output power of 7 mW in pulsed mode is obtained at 10 K, and the typical device maximum operating temperature is 136 K. We identify the photonic-crystal band-edge states involved in the lasing process as originating from the hexapole and monopole modes at the G point of the photonic band structure, as designed. The theoretical far-field patterns, obtained via finite-difference time-domain simulations, are in excellent agreement with experiment. Polarization measurements further support the theory, and the role of the bonding wires in the emission process is elucidated.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 21, 2009
Revised Manuscript: April 3, 2009
Manuscript Accepted: April 5, 2009
Published: May 22, 2009

Y. Chassagneux, R. Colombelli, W. Maineults, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers," Opt. Express 17, 9491-9502 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sakay, Terahertz optoelectronics (New York: Springer, 2005). [CrossRef]
  2. D. Mittleman, Sensing with Terahertz radiation (New York: Springer Books, 2004).
  3. R. K¨ohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "THz semiconductor-heterostructure laser," Nature (London) 417, 156 (2002). [CrossRef]
  4. B. S. Williams, "Terahertz quantum cascade lasers," Nat. Photon. 1, 517-525 (2007). [CrossRef]
  5. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007). [CrossRef]
  6. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242 (2008). [CrossRef] [PubMed]
  7. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060-3062 (2002). [CrossRef]
  8. S. Kohen, B. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  9. A. J. L. Adam, I. Ka˘salynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions," Appl. Phys. Lett. 88, 151105 (2006). [CrossRef]
  10. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, "Horn antennas for terahertz quantum cascade lasers," Electron. Lett. 43, 573 (2007). [CrossRef]
  11. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, "Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions," Nature (London) 457, 174 (2009). [CrossRef]
  12. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007). [CrossRef]
  13. Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. E. Beere, J. Alton, and D. A. Ritchie, "Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range," Appl. Phys. Lett. 90, 091113 (2007). [CrossRef]
  14. P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers," J. Appl. Phys. 104, 124513 (2008). [CrossRef]
  15. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948 (2007). [CrossRef] [PubMed]
  16. B. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Distributed-feedback terahertz quantum cascade lasers with laterally corrugated metal waveguides," Opt. Lett. 30, 2909-2911 (2005). [CrossRef] [PubMed]
  17. G. A. Samara, "Temperature and pressure dependences of the dielectric constants of semiconductors," Phys. Rev. B 27, 3494-3505 (1983). [CrossRef]
  18. J. Vuckovic, M. Loncar, H. Mabchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002). [CrossRef]
  19. S. H. Kim, S. K. Kim, and Y. H. Lee, "Vertical beaming of a wavelength-scale photonic crystal resonator," Phys. Rev. B 73, 235117 (2006). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Norwood, MA: Artech, 2000).
  21. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  22. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B 65, 195306 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited