OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9549–9557

Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers

Xueming Liu  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9549-9557 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dissipative soliton (DS) evolution in passively mode-locked fiber lasers with ultra-large net-normal-dispersion (as large as 1 ps2) is investigated. The proposed DS laser operates on three statuses with respect to the pump power. The DS laser works on a status that is similar to an all-normal-dispersion laser when the pump power is low, whereas it creates a new type of pulses exhibited as the trapezoid-spectrum profile when the pump power is large. The laser cavity emits the unstable pulses between the above two statuses. The cubic–quintic Ginzburg–Landau equation can serve to qualitatively explain our experimental observations.

© 2009 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 3, 2009
Revised Manuscript: May 10, 2009
Manuscript Accepted: May 11, 2009
Published: May 22, 2009

Xueming Liu, "Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers," Opt. Express 17, 9549-9557 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008). [CrossRef]
  2. F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008). [CrossRef]
  3. X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008). [CrossRef]
  4. W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008). [CrossRef]
  5. R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007). [CrossRef]
  6. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992). [CrossRef]
  7. Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007) [CrossRef] [PubMed]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  9. M. Olivier and M. Piché, "Origin of the bound states of pulses in the stretched-pulse fiber laser," Opt. Express 17, 405-418 (2009). [CrossRef] [PubMed]
  10. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, "Stretched-pulse operation of a thulium-doped fiber laser," Opt. Express 16, 20471-20476 (2008). [CrossRef] [PubMed]
  11. O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007). [CrossRef]
  12. F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  13. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006). [CrossRef] [PubMed]
  14. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Express 15, 15824-15835 (2007). [CrossRef] [PubMed]
  15. Ruehl, D. Wandt, U. Morgner, D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Sel. Top. Quantum Electro. 15, 170-181 (2009). [CrossRef]
  16. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006). [CrossRef]
  17. M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, "All-fiber ytterbium femtosecond laser without dispersion compensation," Opt. Express 16, 19562-19567 (2008) [CrossRef] [PubMed]
  18. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt.Lett. 32, 2738-2740 (2007). [CrossRef] [PubMed]
  19. Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008). [CrossRef] [PubMed]
  20. Komarov and F. Sanchez, "Structural dissipative solitons in passive mode-locked fiber lasers," Phys. Rev. E 77, 066201 (2008). [CrossRef]
  21. N. Akhmediev and A. Ankiewics, Eds. Dissipative Solitons (Springer, Berlin, 2005). [CrossRef]
  22. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Express 16, 19322-19329 (2008). [CrossRef]
  23. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008). [CrossRef]
  24. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation," Phys. Rev. A 75, 033811 (2007). [CrossRef]
  25. Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Burlington, MA, 2006).
  27. J. N. Kutz, "Mode-Locked Soliton Lasers," SIAM Rev. 48, 629-678 (2006). [CrossRef]
  28. M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000). [CrossRef] [PubMed]
  29. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, " Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]
  30. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004). [CrossRef]
  31. G. Bale and J. N. Kutz, "Variational method for mode-locked lasers," J. Opt. Soc. Am. B 25, 1193-1202 (2008). [CrossRef]
  32. V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008). [CrossRef] [PubMed]
  33. P. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007). [CrossRef] [PubMed]
  34. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005). [CrossRef]
  35. W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992). [CrossRef]
  36. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997). [CrossRef]
  37. N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited