OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9588–9601

Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers

Paul E. Barclay, Kai-Mei Fu, Charles Santori, and Raymond G. Beausoleil  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9588-9601 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity supports a mode with quality factor Q>1.5×106 and mode volume V<0.52(λ/nGaP)3, and promises to allow Purcell enhanced collection of spontaneous emission from an NV located more than 50 nm below the diamond surface. The nanowire photonic crystal waveguide can be used to efficiently couple light into and out of the cavity, or as an efficient broadband collector of NV phonon sideband emission. The proposed structures can be fabricated using existing materials and processing techniques.

© 2009 Optical Society of America

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 3, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: May 20, 2009
Published: May 22, 2009

Paul E. Barclay, Kai-Mei Fu, Charles Santori, and Raymond G. Beausoleil, "Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers," Opt. Express 17, 9588-9601 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Gruber, A. Dr¨abenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997). [CrossRef]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290 (2000). [CrossRef] [PubMed]
  3. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Nonclassical radiation from diamond nanocrystals," Phys. Rev. A 64, 061 802 (2001). [CrossRef]
  4. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent Population Trapping of Single Spins in Diamond under Optical Excitation," Phys. Rev. Lett. 97, 247 401 (2006). [CrossRef]
  5. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of Coherent Oscillations in a Single Electron Spin," Phys. Rev. Lett. 92, 076 401 (2004). [CrossRef]
  6. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," Science 316, 1312-1316 (2007). [CrossRef]
  7. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," Science 314, 281-285 (2006). [CrossRef] [PubMed]
  8. L. Childress, J. M. Taylor, A. S. Sørensen,, and M. D. Lukin, "Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters," Phys. Rev. Lett. 96, 070 504 (2006). [CrossRef]
  9. S. C. Benjamin, B.W. Lovett, and J. M. Smith, "Prospects for measurement-based quantum computing with solid state spins," arXiv:0901.3092v2 [quant-ph] (2009).
  10. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, "Towards a picosecond transform-limited nitrogen-vacancy based single photon source," Opt. Express 16, 6240-6250 (2008). [CrossRef] [PubMed]
  11. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, "Cavity enhanced spin measurement of the ground state spin of an NV center in diamond," New J. Phys. 11, 013 007 (2009). [CrossRef]
  12. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1824 (1999). [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  14. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081 306(R) (2004). [CrossRef]
  15. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207-210 (2005). [CrossRef]
  16. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa,, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17 206-17 213 (2007). [CrossRef]
  17. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  18. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 455, 896-899 (2007). [CrossRef]
  19. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuˇckovi’c, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  20. Y.-S. Park, A. K. Cook, and H. Wang, "Cavity QED with Diamond Nanocrystals and Silica Microspheres," Nano Lett. 6, 2075-2079 (2006). [CrossRef] [PubMed]
  21. P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, "Coherent interference effects in a nanoassembled optical cavity-QED system," Opt. Express 19, 8081 (2009). [CrossRef]
  22. S. Schietinger, T. Schroder, and O. Benson, "One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator," Nano Lett. 8, 3911-3915 (2008). [CrossRef] [PubMed]
  23. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, "Observation of whispering gallery modes in nanocrystalline diamond microdisks," Appl. Phys. Lett. 90, 081 110 (2007). [CrossRef]
  24. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201 112 (2007).
  25. Y. Shen, T. M. Sweeney, and H. Wang, "Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals," Phys. Rev. B 77, 033 201 (2008). [CrossRef]
  26. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark Shift Control of Single Optical Centers in Diamond," Phys. Rev. Lett. 97, 083 002 (2006). [CrossRef]
  27. S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  28. C. Kreuzer, J. Riedrich-Mller, E. Neu, and C. Becher, "Design of Photonic Crystal Microcavities in Diamond Films," Opt. Express 16, 1632-1644 (2008). [CrossRef] [PubMed]
  29. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I.W. Robert A. Taylor and, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, "Fabrication of Ultrathin Single-Crystal Diamond Membranes," Adv. Mater. 20, 4793-4798 (2008). [CrossRef]
  30. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide," Appl. Phys. Lett. 93, 234 107 (2008). [CrossRef]
  31. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12 084-12 089 (2008).
  32. I. Bayn and J. Salzman, "Ultra high-Q photonic crystal nanocavity design: The effect of a low-∑ slab material," Opt. Express 16, 4972-4980 (2008). [CrossRef] [PubMed]
  33. K. Rivoire, A. Faraon, and J. Vuˇckovi´c, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063 103 (2008). [CrossRef]
  34. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  35. P. Lalanne, "Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone," IEEE J. Quantum Electron. 38, 800-804 (2002). [CrossRef]
  36. K. Srinivasan and O. Painter, "Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two- Dimensional Slab Waveguides," Opt. Express 10, 670-684 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670 [PubMed]
  37. O. Painter and K. Srinivasan, "Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis," Phys. Rev. B 68, 035 110 (2003). [CrossRef]
  38. All FDTD simulations used the MEEP software package. http://ab-initio.mit.edu/wiki/index.php/Meep
  39. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultra-highreflectivity photonic-bandgap mirrors in a ridge SOI waveguide," New J. Phys. 8, 204 (2006). [CrossRef]
  40. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).
  41. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys. 78, 455 (2006). [CrossRef]
  42. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16, 11 095 (2008). [CrossRef]
  43. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-Bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997). [CrossRef]
  44. A. Jugessur, P. Pottier, and R. De La Rue, "One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides," Electron. Lett. 39, 367 - 369 (2003). [CrossRef]
  45. M. W. McCutcheon and M. Lonˇcar, "Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals," Opt. Express 16, 19 136 (2008). [CrossRef]
  46. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a zipper photonic crystal optomechanical cavity," Opt. Express 17, 3802-3817 (2009). [CrossRef] [PubMed]
  47. O. Painter, K. Srinivasan, and P. E. Barclay, "Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals," Phys. Rev. B 68, 035 214 (2003). [CrossRef]
  48. P. E. Barclay, K. Srinivasan, and O. Painter, "Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities," J. Opt. Soc. Amer. B 20, 2274-2284 (2003). [CrossRef]
  49. D. Morie and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004). [CrossRef]
  50. P. Lalanne, S. Mias, and J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004). [CrossRef] [PubMed]
  51. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  52. N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104 303 (2006). [CrossRef]
  53. H. J. Kimble, "Strong Interactions of Single Atoms and Photons in Cavity QED," Phys. Scr. T76, 127-137 (1998). [CrossRef]
  54. C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, "Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing," Phys. Rev. B 79, 125 313 (2009). [CrossRef]
  55. V. S. C. Manga Rao and S. Hughes, "Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic CrystalWaveguide: Proposal for an Efficient "On Chip" Single Photon Gun," Phys. Rev. Lett. 99, 193 901 (2007).
  56. E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, "Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates," Appl. Phys. Lett. 56, 2419-2421 (1990). [CrossRef]
  57. P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, "Microcavities for cavity-QED in single crystal diamond," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009). [PubMed]
  58. G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, "Vacancy-related centers in diamond," Phys. Rev. B 46, 13 157-13 170 (1992). [CrossRef]
  59. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, "Generation of single color centers by focused nitrogen implantation," Applied Physics Letters 87, 261 909 (2005). [CrossRef]
  60. F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, "Creating diamond color centers for quantum optical applications," Diamond and Related Materials 16, 1887 - 1895 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited