OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9648–9661

The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays

Carlo Forestiere, Giovanni Miano, Svetlana V. Boriskina, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9648-9661 (2009)
http://dx.doi.org/10.1364/OE.17.009648


View Full Text Article

Enhanced HTML    Acrobat PDF (1419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we study the role of nanoparticle shape and aperiodic arrangement in the scattering and spatial localization properties of plasmonic modes in deterministic-aperiodic (DA) arrays of metal nanoparticles. By using an efficient coupled-dipole model for the study of the electromagnetic response of large arrays excited by an external field, we demonstrate that DA structures provide enhanced spatial localization of plasmonic modes and a higher density of enhanced field states with respect to their periodic counterparts. Finally, we introduce and discuss specific design rules for the engineering and optimization of field enhancement and localization in DA arrays. Our results, which we fully validated by rigorous Generalized Mie Theory (GMT) and transition matrix (T-matrix) theory, demonstrate that DA arrays provide a robust platform for the design of a variety of novel optical devices with enhanced and controllable plasmonic fields.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 26, 2009
Revised Manuscript: May 1, 2009
Manuscript Accepted: May 6, 2009
Published: May 26, 2009

Citation
Carlo Forestiere, Giovanni Miano, Svetlana V. Boriskina, and Luca Dal Negro, "The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays," Opt. Express 17, 9648-9661 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Queffelec, Substitution dynamical systems-spectral analysis, Lecture Notes in Mathematics, (Springer: Berlin, 1987), Vol. 1294.
  2. E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006). [CrossRef]
  3. S. G. Williams, "Symbolic dynamics and its applications," (American Mathematical Society, Providence, RI, 2004); ISBN, 0821831577.
  4. M. R. Schroeder, Number Theory in Science and Communication, (Springer-Verlag, 1985).
  5. P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, (Springer, New York, 1990). [CrossRef]
  6. C. Janot, Quasicrystals: a primer, 2nd ed. (Oxford University Press, New York, 1997).
  7. M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B 45, 105-114 (1992). [CrossRef]
  8. L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002). [CrossRef]
  9. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, "Photonic-plasmonic scattering resonances in determinsitic aperiodic structures," Nano. Lett. 8, 2423-2431 (2008). [CrossRef] [PubMed]
  10. A. Rudinger and F. Piechon, "On the multifractal spectrum of the Fibonacci chain," J. Phys. A: Math. Gen. 31, 155-164 (1998). [CrossRef]
  11. L. Dal Negro, N. N. Feng, and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A, Pure Appl. Opt. 10, 064013 (2008). [CrossRef]
  12. J. M. Luck, "Cantor spectra and scaling of gap widths in deterministic aperiodic systems," Phys. Rev. B 39, 5834-5849 (1989). [CrossRef]
  13. L. Dal Negro and N. Feng, "Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles," Opt. Express 22, 14396-14403 (2007). [CrossRef]
  14. L. Dal Negro, C. Forestiere, G. Miano, and G. Rubinacci, "Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays," Phys. Rev. B 79, 85404 (2009). [CrossRef]
  15. A. Gopinath, S. Boriskina, B. Reinhard, and L. Dal Negro, "Deterministic aperiodic arrays of metal nanoparticels for surface-enhanced Raman scattering," Opt. Express 17, 3741- 3753 (2009). [CrossRef] [PubMed]
  16. D. W. Brandl, N. A. Mirin, and P. Nordlander, "Plasmon modes of nanosphere trimers and quadrumers," J. Phys. Chem. B 110, 12302-12310 (2006). [CrossRef] [PubMed]
  17. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J. 186, 705-714 (1973). [CrossRef]
  18. B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite dust," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  19. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  20. L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003). [CrossRef]
  21. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, "Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003). [CrossRef]
  22. S. Zou and G. C. Schatz, "Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths," Nanotech. 17, 2813-2820 (2006) [CrossRef]
  23. Y.-L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  24. T. Wriedt and A. Doicu, Light Scattering by Systems of Particles, (Springer, Berlin, 2006).
  25. T. Wriedt, "A review of elastic light scattering theories," Part. Part. Syst. Charact. 15, 67-74 (1998). [CrossRef]
  26. L. Tsang and J. Au Kong, Scattering of Electromagnetic Waves, (John Wiley, NY, 2001).
  27. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides: etimation of waveguide loss," Phys. Rev. B 67, 205402 (2005). [CrossRef]
  28. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (John Wiley, 2004).
  29. P. Nodlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano. Lett. 4, 899-903 (2004) [CrossRef]
  30. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Comm. 220, 137-141 (2003) [CrossRef]
  31. V. Shalaev, Optical properties of nanostructured random media, (Springer-Verlag, 2002). [CrossRef]
  32. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited