OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9669–9679

Modified Shack–Hartmann wavefront sensor using an array of superresolution pupil filters

Susana Ríos and David López  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9669-9679 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A conventional Shack–Hartmann wavefront sensor works with an array of lenslets which produces an array of focal spots in the back focal plane of the lenses. The displacements of the focal spots from a reference position give a measure of the mean local wavefront slopes. To determine the positions of the focal spots, centroiding algorithms have to be used. In this work, the use of superresolution pupil filters to reduce the size of the focal spots is analyzed, as well as its effect on the variance of the centroid estimate, seeking for an enhancing of the sensor accuracy.

© 2009 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(100.6640) Image processing : Superresolution

ToC Category:
Image Processing

Original Manuscript: February 5, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: April 12, 2009
Published: May 26, 2009

Susana Ríos and David López, "Modified Shack–Hartmann wavefront sensor using an array of superresolution pupil filters," Opt. Express 17, 9669-9679 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds., Adaptive Optics for Vision Science (Wiley- Interscience, 2006). [CrossRef]
  2. R. Noll, "Zernike Polynomials and Atmospheric Turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  3. G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 030,502.1-030,502.3 (2006). [CrossRef]
  4. J. Rha, D. G. Voelz, and M. K. Giles, "Reconfigurable Shack-Hartmann wavefront sensor," Opt. Eng. 43, 251- 256 (2004). [CrossRef]
  5. H. J. Tiziani, T. Haist, J. Liesener, M. Reicherter, and L. Seifert, "Application of SLMs for optical metrology," Proc. SPIE 4457, 72-81 (2001). [CrossRef]
  6. J. Lee, R. Shack, and M. Descour, "Sorting method to extend the dynamic range of the Shack-Hartmann wavefront sensor," Appl. Opt. 44, 4838-4845 (2005). [CrossRef] [PubMed]
  7. S. Thomas, T. Fusco, A. Tokovinin,M. Nicolle, V. Michau, and G. Rousset, "Comparison of centroid computation algorithms in a Shack-Hartmann sensor," Monthly Notices of the Royal Astronomical Society 371, 323-336 (2006). [CrossRef]
  8. G. Cao and X. Yu, "Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object," Opt. Eng. 33, 2331-2335 (1994). [CrossRef]
  9. J. Ares and J. Arines, "Influence of Thresholding on Centroid Statistics: Full Analytical Description," Appl. Opt. 43, 5796-5805 (2004). [CrossRef] [PubMed]
  10. J. Ares and J. Arines, "Effective noise in thresholded intensity distribution: influence on centroid statistics," Opt. Lett. 26, 1831-1833 (2001). [CrossRef]
  11. Z. Jiang, S. Gong, and Y. Dai, "Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor," Opt. Laser Technol. 38, 614 - 619 (2006). [CrossRef]
  12. R. Irwan and R. G. Lane, "Analysis of optimal centroid estimation applied to Shack-Hartmann sensing," Appl. Opt. 38, 6737-6743 (1999). [CrossRef]
  13. J. Arines and J. Ares, "Minimum variance centroid thresholding," Opt. Lett. 27, 497-499 (2002). [CrossRef]
  14. V. F. Canales, J. E. Oti, P. J. Valle, M. P. Cagigal, and N. Devaney, "Reduction of the diffraction pattern in segmented apertures," Opt. Eng. 45, 098,001.1-098,001.6 (2006). [CrossRef]
  15. V. F. Canales, D. M. de Juana, and M. P. Cagigal, "Superresolution in compensated telescopes," Opt. Lett. 29, 935-937 (2004). [CrossRef] [PubMed]
  16. I. J. Cox, "Increasing the bit packing densities of optical disk systems," Appl. Opt. 23, 3260-3261 (1984). [CrossRef] [PubMed]
  17. P. Crabtree, C. L. Woods, J. Khoury, and M. Goda, "Binary phase-only filtering for turbulence compensation in fiber-coupled free-space laser communication systems," Appl. Opt. 46, 8335-8345 (2007). [CrossRef] [PubMed]
  18. L. Qiu, W. Zhao, Z. Feng, and X. Ding, "A lateral super-resolution differential confocal technology with phaseonly pupil filter," Optik - International Journal for Light and Electron Optics 118, 67 - 73 (2007). [CrossRef]
  19. M. Martınez-Corral, P. Andres, J. Ojeda-Castaneda, and G. Saavedra, "Tunable axial superresolution by annular binary filters. Application to confocal microscopy," Opt. Commun. 119, 491 - 498 (1995). [CrossRef]
  20. T. R. M. Sales, "Smallest Focal Spot," Phys. Rev. Lett. 81, 3844-3847 (1998). [CrossRef]
  21. T. R. M. Sales and G. M. Morris, "Fundamental limits of optical superresolution," Opt. Lett. 22, 582-584 (1997). [CrossRef] [PubMed]
  22. H. Wang and F. Gan, "High Focal Depth with a Pure-Phase Apodizer," Appl. Opt. 40, 5658-5662 (2001). [CrossRef]
  23. D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, "Focusing properties of annular binary phase filters," Opt. Commun. 229, 71 - 77 (2004). [CrossRef]
  24. M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, "Analytical design of superresolving phase filters," Opt. Commun. 241, 249 - 253 (2004). [CrossRef]
  25. H. Luo and C. Zhou, "Comparison of Superresolution Effects with Annular Phase and Amplitude Filters," Appl. Opt. 43, 6242-6247 (2004). [CrossRef] [PubMed]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  27. C. J. R. Sheppard and Z. S. Hegedus, "Axial behavior of pupil-plane filters," J. Opt. Soc. Am. A 5, 643-647 (1988). [CrossRef]
  28. M. M. Matalgah, J. Knopp, and L. Eifler, "Geometric Approach for Designing Optical Binary Amplitude and Binary Phase-Only Filters," Appl. Opt. 37, 8233-8246 (1998). [CrossRef]
  29. C. J. R. Sheppard, G. Calvert, and M. Wheatland, "Focal distribution for superresolving toraldo filters," J. Opt. Soc. Am. A 15, 849-856 (1998). [CrossRef]
  30. V. F. Canales, P. J. Valle, J. E. Oti, and M. P. Cagigal, "Variable resolution with pupil masks," Opt. Commun. 257, 247 - 254 (2006). [CrossRef]
  31. H. Liu, Y. Yan, D. Yi, and G. Jin, "Design of Three-Dimensional Superresolution Filters and Limits of Axial Optical Superresolution," Appl. Opt. 42, 1463-1476 (2003). [CrossRef] [PubMed]
  32. Y. Xu, J. Singh, C. J. R. Sheppard, and N. Chen, "Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter," Opt. Express 15, 6409-6413 (2007). [CrossRef] [PubMed]
  33. J. Wei and M. Xiao, "Laser tunable Toraldo superresolution with a uniform nonlinear pupil filter," Appl. Opt. 47, 3689-3693 (2008). [CrossRef] [PubMed]
  34. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, "Design of superresolving continuous phase filters," Opt. Lett. 28, 607-609 (2003). [CrossRef] [PubMed]
  35. H. F. A. Tschunko, "Imaging Performance of Annular Apertures," Appl. Opt. 13, 1820-1823 (1974). [CrossRef] [PubMed]
  36. H. Ding, Q. Li, and W. Zou, "Design and comparison of amplitude-type and phase-only transverse superresolving pupil filters," Opt. Commun. 229, 117 - 122 (2004). [CrossRef]
  37. A. Tokovinin, "From Differential Image Motion to Seeing," Publ. Astron. Soc. Pac. 114, 1156-1166 (2002). [CrossRef]
  38. Hamamatsu Photonics, "IEEE1394-based Digital Camera Orca-285 data sheet," http://sales.hamamatsu.com/assets/pdf/hpspdf/C4742-95-12G04.pdf.
  39. W. Zhao, L. Qiu, and Z. Feng, "Effect of fabrication errors on superresolution property of a pupil filter," Opt. Express 14, 7024-7036 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited