OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9688–9703

Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers

Anuj Dhawan, Stephen J. Norton, Michael D. Gerhold, and Tuan Vo-Dinh  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9688-9703 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as “hot spots” between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(350.4990) Other areas of optics : Particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.4236) Materials : Nanomaterials

ToC Category:
Physical Optics

Original Manuscript: March 16, 2009
Revised Manuscript: May 13, 2009
Manuscript Accepted: May 16, 2009
Published: May 26, 2009

Anuj Dhawan, Stephen J. Norton, Michael D. Gerhold, and Tuan Vo-Dinh, "Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers," Opt. Express 17, 9688-9703 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984). [CrossRef]
  2. R. K. Chang and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).
  3. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992). [CrossRef]
  4. P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980). [CrossRef]
  5. M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977). [CrossRef]
  6. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  7. T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984). [CrossRef]
  8. Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002). [CrossRef] [PubMed]
  9. T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends in Anal.Chem. 17, 557-582 (1998). [CrossRef]
  10. T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994). [CrossRef] [PubMed]
  11. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).
  13. A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006). [CrossRef]
  14. H. C. Van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, New York, 1999).
  16. A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).
  17. M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003). [CrossRef]
  18. K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006). [CrossRef]
  19. H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  20. B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007). [CrossRef]
  21. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003). [CrossRef]
  22. M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005). [CrossRef]
  23. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Spectrosc. 56, 150−154 (2002). [CrossRef]
  24. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003). [CrossRef]
  25. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007). [CrossRef]
  26. M. I. Mishchenko, J. W. Hovenier and L. D. Travis, eds., Light Scattering by Nonspherical Particles, (Academic Press, San Diego, 2000).
  27. J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980). [CrossRef]
  28. M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991). [CrossRef]
  29. M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  30. M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004). [CrossRef]
  31. S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005). [CrossRef]
  32. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004). [CrossRef]
  33. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005). [CrossRef]
  34. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007). [CrossRef] [PubMed]
  35. C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005). [CrossRef]
  36. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005). [CrossRef]
  37. W. A. Challener, I. K. Sendur and C. Peng, "Scattered field formulation of finite-difference time-domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003). [CrossRef] [PubMed]
  38. C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008). [CrossRef]
  39. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. D. Negro, "Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles," Opt. Express 16, 5544-5555 (2008). [CrossRef] [PubMed]
  40. B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008). [CrossRef]
  41. S. J. Norton and T. Vo-Dinh, "Optical response of linear chains of metal nanospheres and nanospheroids," J. Opt. Soc. Am. A 25, 2767-2775 (2008). [CrossRef]
  42. J. Caola, "Solid harmonics and their addition theorems," J. Phys. A 11, L23-L25 (1978). [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).
  44. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
  45. H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008). [CrossRef] [PubMed]
  46. R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited