OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9704–9711

Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration

Aude-Reine Bellancourt, Yohan Barbarin, Deran J. H. C. Maas, Mohammad Shafiei, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9704-9711 (2009)
http://dx.doi.org/10.1364/OE.17.009704


View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantum dot (QD) semiconductor saturable absorber mirrors (SESAMs) offer a larger design freedom than standard quantum well (QW) SESAMs. QD density, QD growth conditions, number of QD-layers, and post-growth annealing were optimized to independently reduce the saturation fluence and adjust the modulation depth for an antiresonant SESAM that supported for the first time passive modelocking of a vertical external-cavity surface emitting laser (VECSEL) with the same spot size on gain and absorber. The same spot size is a requirement for the modelocked integrated external-cavity surface emitting laser (MIXSEL) concept which enables wafer-scale fabrication of the ultrafast semiconductor laser. The antiresonant SESAM design has low dispersion, is less susceptible to growth errors, and is therefore very promising for short pulse generation and MIXSEL integration.

© 2009 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.6000) Materials : Semiconductor materials
(230.4320) Optical devices : Nonlinear optical devices
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: May 14, 2009
Published: May 26, 2009

Citation
Aude-Reine Bellancourt, Yohan Barbarin, Deran J. H. C. Maas, Mohammad Shafiei, Martin Hoffmann, Matthias Golling, Thomas Südmeyer, and Ursula Keller, "Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration," Opt. Express 17, 9704-9711 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). [CrossRef] [PubMed]
  2. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams," IEEE Photon. Technol. Lett. 9, 1063-1065 (1997). [CrossRef]
  3. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, "Highly efficient optically pumped vertical emitting semiconductor laser with more than 20-W average output power in a fundamental transverse mode," Opt. Lett. 33, 2719-2721 (2008). [CrossRef] [PubMed]
  4. J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, and L. Spinelli, "High Power Optically Pumped Semiconductor Lasers," in Photonics West 2004, Solid State Lasers XIII: Technology and Devices, in Proc. SPIE 5332, H. J. H. R. Scheps, ed. (2004), 143-150.
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  6. U. Keller, and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006). [CrossRef]
  7. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30, 272-274 (2005). [CrossRef] [PubMed]
  8. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, "Ultrafast optical Stark mode-locked semiconductor laser," Opt. Lett. 33, 2797-2799 (2008). [CrossRef] [PubMed]
  9. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, "50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power," IEEE J. Quantum Electron. 42, 838-847 (2006). [CrossRef]
  10. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, "Vertical integration of ultrafast semiconductor lasers," Appl. Phys. B: Lasers Opt. 88, 493-497 (2007). [CrossRef]
  11. A.-R. Bellancourt, D. J. H. C. Maas, B. Rudin, M. Golling, T. Südmeyer, and U. Keller, "Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL)," IET Optoelectronics 3, 61-72 (2009). [CrossRef]
  12. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000). [CrossRef]
  13. I. Young, E. Mohammed, J. Liao, Alexandra Kern, S.  Palermo, B. Block, M. Reshotko, and P. Chang, "Optical I/O Technology for Tera-Scale Computing," IEEE International Solid-State Circuits Conference 2009 (2009).
  14. U. Keller, "Ultrafast solid-state lasers," in Landolt-Börnstein. Laser Physics and Applications. Sub volume B: Laser Systems. Part I., G. Herziger, H. Weber, and R. Proprawe, eds. (Springer Verlag, Heidelberg, 2007), 33-167.
  15. R. Paschotta, R. Häring, U. Keller, A. Garnache, S. Hoogland, and A. C. Tropper, "Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B: Lasers Opt. 75, 445-451 (2002). [CrossRef]
  16. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, "Growth parameter optimization for fast quantum dot SESAMs," Opt. Express 16, 18646-18656 (2008). [CrossRef]
  17. A. Garnache, S. Hoogland, A. C. Tropper, J. M. Gerard, V. Thierry-Mieg, and J. S. Roberts, "Pico-second passively mode locked surface-emitting laser with self-assembled semiconductor quantum dot absorber," in CLEO/Europe-EQEC, p. postdeadline paper. (2001)
  18. E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, "Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers," IEEE Photon. Technol. Lett. 16, 2439-2441 (2004). [CrossRef]
  19. C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, "Quantum dot saturable absorber for passive mode locking of Nd : YVO4 lasers at 1064 nm," Appl. Phys. B: Lasers Opt. 87, 671-675 (2007). [CrossRef]
  20. M. Lumb, D. Farrell, E. Clarke, M. Damzen, and R. Murray, "Post-growth tailoring of quantum-dot saturable absorber mirrors by chemical etching," Appl. Phys. B: Lasers Opt. 94, 393-398 (2009). [CrossRef]
  21. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, "New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers," Appl. Phys. B:Lasers Opt. 80, 151-158 (2005). [CrossRef]
  22. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B: Lasers Opt. 70, S41-S49 (2000).
  23. D. J. H. C. Maas, MIXSEL - a new class of ultrafast semiconductor lasers, (Hartung-Gorre Verlag, Konstanz, 2009), Chap. 3.
  24. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, "High precision optical characterization of semiconductor saturable absorber mirrors," Opt. Express 16, 7571-7579 (2008). [CrossRef] [PubMed]
  25. S. Malik, C. Roberts, R. Murray, and M. Pate, "Tuning self-assembled InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 71, 1987-1989 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited