OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9724–9732

Optical torques guiding cell motility

Gabriel Biener, Emmanuel Vrotsos, Kiminobu Sugaya, and Aristide Dogariu  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9724-9732 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The main mechanism responsible for cell motility is the stochastic generation and breakup of actin filaments forming the cytoskeleton. However, the role of environmental factors in the migration and differentiation of cells is yet to be fully understood. Here we demonstrate that polarized optical fields can exert controllable torques on the actin network and therefore influence the treadmilling process responsible for cells motility. Through systematic experiments and stochastic modeling we demonstrate that actively guiding the dynamics of large groups of cells is possible in a noninvasive manner.

© 2009 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.5430) Physical optics : Polarization

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: April 27, 2009
Revised Manuscript: May 20, 2009
Manuscript Accepted: May 20, 2009
Published: May 26, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Gabriel Biener, Emannuel Vrotsos, Kiminogu Sugaya, and Aristide Dogariu, "Optical torques guiding cell motility," Opt. Express 17, 9724-9732 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Betz, D. Lim, and J. A. Käs, "Neuronal Growth: a bistable stochastic process," Phys. Rev. Lett. 96, 098103 (2006). [CrossRef] [PubMed]
  2. K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, A. Mogilner, and J. A. Theriot, "Mechanism of shape determination in motile cells," Nature 453, 475-480 (2008). [CrossRef] [PubMed]
  3. H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell, Molecular Cell Biology (W. H. Freeman, New York, 2004).
  4. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  5. A. Ashkin and J. M. Dziedzik, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  6. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]
  7. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, "Scattering forces from the curl of the spin angular momentum of a light field," Phys. Rev. Lett. 102, 113602 (2009). [CrossRef] [PubMed]
  8. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936). [CrossRef]
  9. L. Allen, S. M. Barnett, M. J. Padgett, Optical Angular Momentum (Institute of Physics Pub., Bristol, 2003). [CrossRef]
  10. K. Svoboda and S. M. Block, "Biological Applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  11. D. J. Odde and M. J. Renn, "Laser-guided direct writing of living cells," Biotechnol. Bioeng. 67, 312-318 (2000). [CrossRef] [PubMed]
  12. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria-infected red blood cells in optical trap," Opt. Express 12, 1179-1184 (2004). [CrossRef] [PubMed]
  13. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Orientation of biological cells using plane polarization Gaussian beam optical tweezers," J. Mod. Opt. 50, 1581-1590 (2003).
  14. G. Garab, P. Galajda, I. Pomozi, L. Finzi, T. Praznovszky, P. Ormos, and H. van Amerongen, "Alignment of biological microparticles by a polarized laser beam," Eur. Biophys. J. 34, 335-343 (2005). [CrossRef] [PubMed]
  15. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. A. Käs, "Guiding neuronal growth with light," Proc. Natl. Acad. Sci. 99, 16024-16028 (2002). [CrossRef] [PubMed]
  16. D. R. Burnham, G. D. Wright, N. D. Read, and D. McGloin, "Holographic and single beam optical manipulation of hyphal growth in filamentous fungi," J. Opt. A: Pure Appl. Opt. 9, S172-S179 (2007). [CrossRef]
  17. R. Ananthakrishnan and A. Ehrlicher, "The forces behind cell movement," Int. J. Biol. Sci. 3, 303-317 (2007). [PubMed]
  18. D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, "Guided neuronal growth using optical line traps," Opt. Express 16, 10507-10517 (2008). [CrossRef] [PubMed]
  19. A. I. Norman, R. Ivkov, J. G. Forbes, and S. C. Greer, "The polymerization of actin: structural changes from small-angle neutron scattering," J. Chem. Phys. 123, 154904 (2005). [CrossRef] [PubMed]
  20. B. Bhaduri, A. Neild, and T. W. Ng, "Directional Brownian diffusion dynamics with variable magnitudes," Appl. Phys. Lett. 92, 084105 (2008). [CrossRef]
  21. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical applcation and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 33802 (2003). [CrossRef]
  22. K. D. Bonin, B. Kourmanov, and T. G. Walker, "Light torque nanocontrol, nanomotors and nanorockers," Opt. Express 10, 984-989 (2002). [PubMed]
  23. A. La Porta and M. D. Wang, "Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles," Phys. Rev. Lett. 92, 190801 (2004). [CrossRef] [PubMed]
  24. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  25. M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, and P. Silberzan, "Collective migration of an epithelial monolayer in response to a model wound," Proc. Natl. Acad. Sci. USA 104, 15988-15993 (2007). [CrossRef]
  26. A. Bianco, M. Poukkula, A. Cliffe, J. Mathieu, C. M. Luque, T. A. Fulga, and P. Rørth, "Two distinct modes of guidance signaling during collective migration of border cells," Nature 448, 362-365 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4063 KB)     
» Media 2: MOV (1582 KB)     
» Media 3: MOV (805 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited