OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9764–9779

Coherently-controlled two-dimensional photon echo electronic spectroscopy

Valentyn I. Prokhorenko, Alexei Halpin, and R. J. Dwayne Miller  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9764-9779 (2009)
http://dx.doi.org/10.1364/OE.17.009764


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical two-dimensional photon-echo spectroscopy is realized with shaped excitation pulses, allowing coherent control of two-dimensional spectra. This development enables probing of state-selective quantum decoherence and phase/time sensitive couplings between states. The coherently-controlled two-dimensional photon-echo spectrometer with two pulse shapers is based on a passively stabilized four-beam interferometer with diffractive optic, and allows heterodyne detection of signals with a long-term phase stability of ~Λ/100. The two-dimensional spectra of Rhodamine 101 in a methanol solution, measured with unshaped and shaped pulses, exhibit significant differences. We observe in particular, the appearance of fine structure in the spectra obtained using shaped excitation pulses.

© 2009 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Spectroscopy

History
Original Manuscript: March 2, 2009
Revised Manuscript: May 12, 2009
Manuscript Accepted: May 18, 2009
Published: May 27, 2009

Citation
Valentyn I. Prokhorenko, Alexei Halpin, and R.J. D. Miller, "Coherently-controlled two-dimensional photon echo electronic spectroscopy," Opt. Express 17, 9764-9779 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998). [CrossRef]
  2. T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005). [CrossRef]
  3. P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003). [CrossRef]
  4. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 1516681-16689 (2007). [CrossRef] [PubMed]
  5. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004). [CrossRef]
  6. G. D. Goodno, G. Dadusc, and R. J. D. Miller, "Ultrafast heterodyne detected transient grating spectroscopy using diffractive optics," J. Opt. Soc. Am. B 15,1791-1794 (1998). [CrossRef]
  7. T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004). [CrossRef]
  8. J. P. Ogilvie, M. L. Cowan, A. M. Nagy, and R. J. D. Miller, "Diffractive optics-based heterodyne detected threepulse photon echo," in Ultrafast Phenomena XIII, R. J. D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner, eds. (Springer-Verlag, 2003), pp. 571-573.
  9. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005). [CrossRef] [PubMed]
  10. F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009). [CrossRef]
  11. D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004). [CrossRef] [PubMed]
  12. S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007). [CrossRef] [PubMed]
  13. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007). [CrossRef] [PubMed]
  14. K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007). [CrossRef]
  15. V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005). [CrossRef] [PubMed]
  16. A. Maznev, T. F. Crimmins, and K. A. Nelson, "How to make femtosecond pulses overlap," Opt. Lett. 23,1378-1380 (1998). [CrossRef]
  17. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, "Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics," Opt. Lett. 33,2851-2853 (2008) [CrossRef] [PubMed]
  18. K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002). [CrossRef]
  19. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25,587-589 (2000). [CrossRef]
  20. E. H. G. Backus, S. Garret-Roe, and P. Hamm, "Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy," Opt. Lett. 33,2665-2667 (2008). [CrossRef] [PubMed]
  21. A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, "All-optical retrieval of the global phase for twodimensional Fourier-transform spectroscopy," Opt. Express 16,18017-18027 (2008). [CrossRef]
  22. S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999). [CrossRef]
  23. J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001). [CrossRef]
  24. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004). [CrossRef] [PubMed]
  25. S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press, New York, 1995).
  26. V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000). [CrossRef] [PubMed]
  27. M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited