OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9789–9803

Impacts of geometric modifications on infrared optical responses of metallic slit arrays

Yu-Bin Chen, Jia-Shiang Chen, and Pei-feng Hsu  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9789-9803 (2009)
http://dx.doi.org/10.1364/OE.17.009789


View Full Text Article

Enhanced HTML    Acrobat PDF (1260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work numerically investigates optical responses (absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence by employing the rigorous coupled-wave analysis. For slits with attached features, their optical responses can be much different due to the modified cavity geometry and dangled structures, even at wavelengths between 3 and 15 µm. The shifts of cavity resonance excitation result in higher transmittance through narrower slits at specific wavelengths and resonance modes are confirmed with the electromagnetic fields. Opposite roles possibly played by features in increasing or decreasing absorptance are determined by the feature position and demonstrated by Poynting vectors. Correlations among all responses of a representative slit array, the angle of incidence, and the slit density are also comprehensively studied. When multiple slit types coexist in an array (complex slits), a wide-band transmittance or absorptance enhancement is feasible by merging spectral peaks contributed from each type of slits distinctively. Discrepancy among infrared optical responses of four selected slit combinations is explained while effects of slit density are also discussed.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4760) Materials : Optical properties
(260.3060) Physical optics : Infrared
(260.5740) Physical optics : Resonance
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 6, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 22, 2009
Published: May 27, 2009

Citation
Yu-Bin Chen, Jia-Shiang Chen, and Pei-feng Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17, 9789-9803 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9789


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Organ pipe radiant modes of periodic micromachined silicon surfaces," Nature 324, 549-551 (1986). [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  3. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  4. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  5. F. J. García-Vidal and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002). [CrossRef]
  6. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  7. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002). [CrossRef] [PubMed]
  8. A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002). [CrossRef]
  9. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-70. [CrossRef] [PubMed]
  10. C. J. Min, X. J. Jiao, P. Wang, and H. Ming, "Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure," Opt. Express 14, 5657-5663 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5657. [CrossRef] [PubMed]
  11. D. Crouse and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1415. [CrossRef] [PubMed]
  12. D. C. Skigin and R. A. Depine, "Diffraction by dual-period gratings," Appl. Opt. 46, 1385-1391 (2007). [CrossRef] [PubMed]
  13. A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, "Enhanced transmission of slit arrays in an extremely thin metallic film," J. Opt. A 9, 165-169 (2007). [CrossRef]
  14. B. Hou and W. J. Wen, "Transmission resonances of electromagnetic wave through metallic gratings: phase and field characterizations," Opt. Express 16, 17098-17106 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-17098. [CrossRef] [PubMed]
  15. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).
  16. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008). [CrossRef]
  17. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Confinement of infrared radiation to nanometer scales through metallic slit arrays," J. Quant. Spectrosc. Radiat. Transfer 109, 608-619 (2008). [CrossRef]
  18. P. Hewageegana and V. Apalkov, "Enhanced mid-infrared transmission through a metallic diffraction grating," J. Phys.: Condens. Matter 20, 395228 (2008). [CrossRef]
  19. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).
  20. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  23. V. Halté, A. Benabbas, and J. Y. Bigot, "Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals," Opt. Express 14, 2909-2920 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2909. [CrossRef] [PubMed]
  24. Y.-B. Chen, Z. M. Zhang, and P. J. Timans, "Radiative properties of patterned wafers with nanoscale linewidth," J. Heat Transf.-Trans. ASME 129, 79-90 (2007). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  26. Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited