OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9879–9890

Frequency dependent steering with backward leaky waves via photonic crystal interface layer

Evrim Colak, Humeyra Caglayan, Atilla Ozgur Cakmak, Alessandro Della Villa, Filippo Capolino, and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9879-9890 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70° angular range when frequency ranges in the 11.88–13.69GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

© 2009 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(350.5500) Other areas of optics : Propagation
(350.5610) Other areas of optics : Radiation
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 12, 2009
Revised Manuscript: May 22, 2009
Manuscript Accepted: May 25, 2009
Published: May 28, 2009

Evrim Colak, Humeyra Caglayan, Atilla O. Cakmak, Alessandro D. Villa, Filippo Capolino, and Ekmel Ozbay, "Frequency dependent steering with backward leaky waves via photonic crystal interface layer," Opt. Express 17, 9879-9890 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994). [CrossRef]
  4. B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998). [CrossRef]
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991). [CrossRef]
  6. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  7. S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005). [CrossRef]
  8. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402, R (2004). [CrossRef]
  9. Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008). [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  11. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  12. I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005). [CrossRef] [PubMed]
  13. H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008). [CrossRef]
  14. Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003). [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999). [CrossRef]
  16. T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  17. A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004). [CrossRef]
  18. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963). [CrossRef]
  19. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963). [CrossRef]
  20. A. A. Oliner and D. R. Jackson, "Leaky-Wave Antennas," Antenna Engineering Handbook, J. Volakis, ed., (McGraw Hill, (2007) Ch. 11.
  21. S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004). [CrossRef]
  22. D. F. Sievenpiper, "Forward and Backward Leaky Wave Radiation With Large Effective Aperture From an Electronically Tunable Textured Surface," IEEE Trans. Antennas and Propagat. 53, 236-247 (2005). [CrossRef]
  23. D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002). [CrossRef]
  24. Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002). [CrossRef]
  25. T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007). [CrossRef]
  26. I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974). [CrossRef]
  27. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008). [CrossRef] [PubMed]
  28. I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003). [CrossRef]
  29. I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003). [CrossRef]
  30. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007). [CrossRef]
  31. S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007). [CrossRef]
  32. F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005). [CrossRef]
  33. Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005). [CrossRef]
  34. IEEE Stand. Def. Terms Antennas, IEEE Std. 145-1993, (1993).
  35. C. A. Balanis, Antenna Theory, (John Wiley & Sons, 3rd Edition, 2005) Ch. 2 and 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited