OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9904–9917

Scatterer localization using a left-handed medium

David Karkashadze, Juan Pablo Fernández, and Fridon Shubitidze  »View Author Affiliations

Optics Express, Vol. 17, Issue 12, pp. 9904-9917 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1080 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper explores the possibility of using the focusing property of left-handed materials to estimate the location of a visually obscured target. The field scattered by the target and measured on a surface can be considered as incident upon a left-handed half-space and should converge to a point resembling the mirror image of the scatterer’s location. The results are obtained using the method of auxiliary sources as adapted to double-negative media. Two-dimensional scattering is considered, either from a single object or from several targets, using pointlike and Gaussian sources of illumination. The method gives reasonable results when the sizes of the scatterers are comparable to the wavelength.

© 2009 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(260.2110) Physical optics : Electromagnetic optics
(290.3200) Scattering : Inverse scattering
(350.5500) Other areas of optics : Propagation
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Physical Optics

Original Manuscript: March 4, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: May 22, 2009
Published: May 28, 2009

David Karkashadze, Juan Pablo Fernández, and Fridon Shubitidze, "Scatterer localization using a left-handed medium," Opt. Express 17, 9904-9917 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Daniels, "Ground Penetrating Radar for Buried Landmine and IED Detection," in Unexploded Ordnance Detection and Mitigation, J. Byrnes, ed., pp. 89-111 (Springer Netherlands, Dordrecht, 2009). [CrossRef]
  2. A. Karellas and S. Vedantham, "Breast cancer imaging: A perspective for the next decade," Med. Phys. 35, 4878-4897 (2008). [CrossRef] [PubMed]
  3. F. S. Grant and G. F. West, Interpretation Theory in Applied Geophysics (McGraw-Hill, New York, 1965).
  4. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  5. S. A. Ramakrishna and T. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press/SPIE Press, Boca Raton, FL, 2008). [CrossRef]
  6. N. Engheta and R. W. Ziolkowski, eds., Metamaterials: Physics and Engineering Explorations (IEEE Press/ Wiley-Interscience, Piscataway, NJ, 2006).
  7. R. E. Kleinman and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci. 29, 1157-1169 (1994). [CrossRef]
  8. Q1. J.-G. Minonzio, F. D. Philippe, C. Prada, and M. Fink, "Characterization of an elastic cylinder and an elastic sphere with the time-reversal operator: application to the sub-resolution limit," Inv. Prob. 24, 025014 (2008). [CrossRef]
  9. T. M. Grzegorczyk, C. D. Moss, J. Lu, X. Chen, J. Pacheco, Jr., and J. A. Kong, "Properties of Left-Handed Metamaterials: Transmission, Backward Phase, Negative Refraction, and Focusing," IEEE Trans. Microwave Theory Tech. 53, 2956-2967 (2005). [CrossRef]
  10. S. A. Ramakrishna and J. B. Pendry, "Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry," Phys. Rev. B 69, 115115 (2004). [CrossRef]
  11. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  13. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor materials," Nature Mater. 6, 946-950 (2007). [CrossRef]
  14. N. Engheta and R. W. Ziolkowski, "A Positive Future for Double-Negative Metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  15. R. W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003). [CrossRef] [PubMed]
  16. R.W. Ziolkowski and E. Heyman, "Wave Propagation in Media Having Negative Permittivity and Permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  17. Q2. V. D. Kupradze, "On the approximate solution of problems of mathematical physics," Usp. Mat. Nauk 22(2), 59-107 (1967).
  18. F. G. Bogdanov, D. D. Karkashadze, and R. S. Zaridze, "The Method of Auxiliary Sources in Electromagnetic Scattering Problems," in Generalized Multipole Techniques for Electromagnetic and Light Scattering, T. Wriedt, ed., pp. 143-172 (Elsevier Science, Amsterdam, 1999).
  19. R. Zaridze, G. Bit-Babik, K. Tavzarashvili, D. P. Economou, and N. K. Uzunoglu, "Wave Field Singularity Aspects in Large-Size Scatterers and Inverse Problems," IEEE Trans. Antennas Propag. 50, 50-58 (2002). [CrossRef]
  20. F. Shubitidze, K. O’Neill, S. A. Haider, K. Sun, and K. D. Paulsen, "Application of the Method of Auxiliary Sources to theWide-Band Electromagnetic Induction Problem," IEEE Trans. Geosci. Remote Sens. 40, 928-942 (2002). [CrossRef]
  21. H. T. Anastassiu, D. I. Kaklamani, D. P. Economou, and O. Breinbjerg, "Electromagnetic scattering analysis of coated conductors with edges using the method of auxiliary sources (MAS) in conjunction with the standard impedance boundary conditions (SIBC)," IEEE Trans. Antennas Propag. 50, 59-66 (2002). [CrossRef]
  22. F. Shubitidze, H. T. Anastassiu, and D. I. Kaklamani, "An improved accuracy version of the method of auxiliary sources for computational electromagnetics," IEEE Trans. Antennas Propag. 52, 302-309 (2004). [CrossRef]
  23. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," in Polaritons: Proc. of 1st Taormina Research Conf. on the Structure of Matter, E. Burstein and F. D. Martini, eds., pp. 5-13 (1972).
  24. Q3. V. G. Veselago, "Electrodynamics of materials with negative index of refraction," Phys. Usp. 46, 764-768 (2003). [CrossRef]
  25. J. G. Van Bladel, Electromagnetic Fields, 1st ed. (McGraw-Hill, New York, 1964).
  26. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 of National Bureau of Standards Applied Mathematics Series (U.S. Government Printing Office, Washington, D.C., 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited