OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9962–9970

Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 µm

Lin Gan, Ya-Zhao Liu, Jiang-Yan Li, Ze-Bo Zhang, Dao-Zhong Zhang, and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9962-9970 (2009)
http://dx.doi.org/10.1364/OE.17.009962


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.

© 2009 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: February 27, 2009
Revised Manuscript: April 26, 2009
Manuscript Accepted: May 12, 2009
Published: May 29, 2009

Citation
Lin Gan, Ya-Zhao Liu, Jiang-Yan Li, Ze-Bo Zhang, Dao-Zhong Zhang, and Zhi-Yuan Li, "Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm," Opt. Express 17, 9962-9970 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449 (2005) [CrossRef]
  4. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358(2005) [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. Q1. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature (London) 455, 376-U332 (2008). [CrossRef]
  7. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930 (2008). [CrossRef] [PubMed]
  8. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  10. Z. Y. Li, and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). [CrossRef]
  11. S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003). [CrossRef]
  12. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature (London) 423, 604-605 (2003). [CrossRef]
  13. K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, "Three-dimensional light focusing in inverse opal photonic crystals," Phys. Rev. B 75, 115108 (2007). [CrossRef]
  14. P. T. Rakich, M. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. Petrich, J. D. Joannopoulos, L. Kolodziejski, and E. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5, 93-96 (2006). [CrossRef] [PubMed]
  15. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  16. N. Fabre, L. Lalouat, B. Cluzel, X. Melique, D. Lippens, F. de Fornel, and O. Vanbesien, "Optical near-field microscopy of light focusing through a photonic crystal flat lens," Phys. Rev. Lett. 101, 073901 (2008). [CrossRef] [PubMed]
  17. R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C.W. Wong, "Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range," Phys. Rev. Lett. 100, 187401 (2008). [CrossRef] [PubMed]
  18. T. Matsumoto, K. S. Eom, and T. Baba, "Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate," Opt. Lett. 31, 2786-2788 (2006). [CrossRef] [PubMed]
  19. T. Baba, T. Matsumoto, and M. Echizen, "Finite difference time domain study of high efficiency photonic crystal superprisms," Opt. Express 12, 4608-4613 (2004). [CrossRef] [PubMed]
  20. J. Tian, M. Yan, M. Qiu, C. G. Ribbing, Y. Z. Liu, D. Z. Zhang, and Z. Y. Li, "Direct characterization of focusing light by negative refraction in a photonic crystal flat lens," Appl. Phys. Lett. 93, 191114 (2008). [CrossRef]
  21. S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  22. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Artech House Publishers, Boston, 2000).
  23. Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, and Q. Luo, "Multichannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited