OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9971–9980

Spiral-type terahertz antennas and the manifestation of the Mushiake principle

Ranjan Singh, Carsten Rockstuhl, Christoph Menzel, Todd P. Meyrath, Mingxia He, Harald Giessen, Falk Lederer, and Weili Zhang  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9971-9980 (2009)
http://dx.doi.org/10.1364/OE.17.009971


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental and theoretical study of the resonant eigenmodes of spiral-type terahertz antennas. The analysis is carried out for a varying number of spiral windings. For larger numbers the structure possesses a self-complementary property which allows the application of the Mushiake principle predicting that the impedance of such structures is half the impedance of free space. This permits to observe an equal and frequency independent reflection and transmission coefficient. This property makes the spiral-type terahertz antenna not only a fascinating example of a medium supporting strong resonances in the long wavelength limit but also a medium which can be easily and reasonably homogenized at higher frequencies. This is in stark contrast to most of the existing metamaterials.

© 2009 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Metamaterials

History
Original Manuscript: March 30, 2009
Revised Manuscript: May 7, 2009
Manuscript Accepted: May 9, 2009
Published: May 29, 2009

Citation
Ranjan Singh, Carsten Rockstuhl, Christoph Menzel, Todd P. Meyrath, Mingxia He, Harald Giessen, Falk Lederer, and Weili Zhang, "Spiral-type terahertz antennas and the manifestation of the Mushiake principle," Opt. Express 17, 9971-9980 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  2. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997). [CrossRef]
  3. L. Novotny, B. Hecht, Principles of Nano-Optics, 1st ed., (Cambridge University Press, 2006).
  4. R. Singh, E. Smirnova, A. J. Taylor, J. F. OHara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008). [CrossRef]
  5. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008). [CrossRef]
  6. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  7. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007). [CrossRef] [PubMed]
  8. N. Engheta, R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Aspects, 1st ed. (Wiley & Sons, 2006)
  9. T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008). [CrossRef] [PubMed]
  10. D. J. Cho, F. Wang, X. Zhang, and Y. Ron Shen, "Contribution of the electric quadrupole resonance in optical metamaterials," Phys. Rev. B 78, 121101(R) (2008). [CrossRef]
  11. D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).
  12. C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008). [CrossRef]
  13. E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007). [CrossRef]
  14. N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008). [CrossRef]
  15. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002). [CrossRef] [PubMed]
  16. T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006). [CrossRef]
  17. Y. Mushiake, Self- Complementary Antennas. Principle of Self- Complementarity for Constant Impedance, 1st ed., (Springer, 1996)
  18. Y. Mushiake, "Self-complementary antennas," IEEE Antennas and Propagation Magazine,  34, 23-29 (1992). [CrossRef]
  19. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995). [CrossRef]
  20. J. F. OHara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin film sensing with planar terahertz metamaterials:sensitivity and limitations," Opt. Express 16, 1786-1795 (2008). [CrossRef]
  21. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  22. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009). [CrossRef]
  23. A. K. Azad, J. Dai, and W. Zhang, "Transmission properties of terahertz pulses through subwavelength double split ring resonators," Opt. Lett. 31, 634 636 (2006). [CrossRef]
  24. New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  26. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  27. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003). [CrossRef]
  28. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008). [CrossRef]
  29. R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited