OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 12 — Jun. 8, 2009
  • pp: 9981–9988

Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals

Xinzheng Zhang, Junqiao Wang, Baiquan Tang, Xinhui Tan, Romano A. Rupp, Leiting Pan, Yongfa Kong, Qian Sun, and Jingjun Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 12, pp. 9981-9988 (2009)
http://dx.doi.org/10.1364/OE.17.009981


View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple method to trap and manipulate metallic micro/nano-particles on the surface of photorefractive crystals is proposed. After inducing inhomogeneous charge density and space-charge fields in photorefractive crystals by non-uniform illumination, both uncharged and charged metallic particles can be trapped on the illuminated surface due to dielectrophoretic force and electrophoretic force, respectively. A transition from dielectrophoresis to electrophoresis is observed when manipulating nano-silver particles with high surface space-charge field. Our results show that this method is simple and effective to form surface microstructures of metallic particles.

© 2009 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 28, 2009
Revised Manuscript: May 13, 2009
Manuscript Accepted: May 14, 2009
Published: May 29, 2009

Citation
Xinzheng Zhang, Junqiao Wang, Baiquan Tang, Xinhui Tan, Romano A. Rupp, Leiting Pan, Yongfa Kong, Qian Sun, and Jingjun Xu, "Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals," Opt. Express 17, 9981-9988 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-9981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996). [CrossRef]
  2. H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998). [CrossRef]
  3. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003). [CrossRef]
  4. L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008). [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  8. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  9. H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22(7), 869 (1951). [CrossRef]
  10. H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182 (1958). [CrossRef]
  11. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997). [CrossRef] [PubMed]
  12. P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002). [CrossRef] [PubMed]
  13. G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007). [CrossRef]
  14. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997). [CrossRef] [PubMed]
  15. M. P. Hughes, “Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion,” J. Colloid Interface Sci. 250(2), 291–294 (2002). [CrossRef]
  16. A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001). [CrossRef]
  17. S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001). [CrossRef]
  18. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007). [CrossRef]
  19. P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993).
  20. K. Buse, “Light induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997). [CrossRef]
  21. E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994). [CrossRef]
  22. B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996). [CrossRef] [PubMed]
  23. X. Shen, J. Zhao, R. Wang, X. Yi, P. Yeh, and H. Chen, “Recording of second-harmonic index gratings in photorefractive (K(0.5) Na(0.5))(0.2) (Sr(0.75) Ba(0.25))(0.9) Nb(2)O(6) crystals,” Opt. Lett. 24(5), 312–314 (1999). [CrossRef]
  24. F. Vachss and L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5(5), 690–701 (1988). [CrossRef]
  25. A. Bledowski, J. Otten, and K. H. Ringhofer, “Photorefractive hologram writing with modulation 1,” Opt. Lett. 16(9), 672–674 (1991). [CrossRef] [PubMed]
  26. P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999). [CrossRef]
  27. P. M. Johansen, “Photorefractive space-charge field formation: linear and nonlinear effects,” J. Opt. A, Pure Appl. Opt. 5(6), S398–S415 (2003). [CrossRef]
  28. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974). [CrossRef]
  29. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited