OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10434–10456

Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses

Guillaume Duchateau  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10434-10456 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When potassium dihydrogen phosphate crystals (KH2PO4 or KDP) are illuminated by multi-gigawatt nanosecond pulses, damages may appear in the crystal bulk. One can increase damage resistance through a conditioning that consists in carrying out a laser pre-exposure of the crystal. The present paper addresses the modeling of laser-induced damage and conditioning of KDP crystals. The method is based on heating a distribution of defects, the cooperation of which may lead to a dramatic temperature rise. In a previous investigation [Opt. Express 15, 4557-4576 (2007)], calculations were performed for cases where the heat diffusion was permitted in one and three spatial dimensions, corresponding respectively to planar and point defects. For the sake of completeness, the present study involves the 2D heat diffusion that is associated with linear defects. A comparison to experimental data leads to the conclusion that 1D calculations are the most appropriate for describing the laser-induced damage in KDP. Within this framework, the evolution of the damage density is given as a function of the laser energy density and an in-depth analysis of the results is provided based on simple analytical expressions that can be used for experimental design. Regarding the conditioning, assuming that it is due to a decrease in the defect absorption efficiency, two scenarios associated with various defect natures are proposed and these account for certain of the observed experimental facts. For instance, in order to improve the crystal resistance to damage, one needs to use a conditioning pulse duration shorter than the testing pulse. Also, a conditioning scenario based on the migration of point (atomic-size) defects allows the reproduction of a logarithmic-like evolution of the conditioning gain with respect to the number of laser pre-exposures. Moreover, this study aims at refining the knowledge regarding the precursor defects responsible for the laser-induced damage in KDP crystals. Within the presented modeling, the best candidate permitting the reproduction of major experimental facts is comprised of a collection of one-hundred-nanometer structural defects associated with point defects as for instance cracks and couples of oxygen interstitials and vacancies.

© 2009 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3390) Lasers and laser optics : Laser materials processing
(320.4240) Ultrafast optics : Nanosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 16, 2009
Revised Manuscript: May 30, 2009
Manuscript Accepted: June 2, 2009
Published: June 8, 2009

Guillaume Duchateau, "Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses," Opt. Express 17, 10434-10456 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, "Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser," Int. Mater. Rev. 47, 113-152 (2002). [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, "Localized dynamics during laserinduced damage in optical materials," Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  3. J. Swain, S. Stokowski, D. Milam, and F. Rainer, " Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation," Appl. Phys. Lett. 40, 350-352 (1982). [CrossRef]
  4. J. J. Adams, J. R. Bruere, M. Bolourchi, C. W. Carr, M. D. Feit, R. P. Hackel, D. E. Hahn, J. A. Jarboe, L. A. Lane, R. L. Luthi, J. N. McElroy, A. M. Rubenchik, J. R. Stanley, W. D. Sell, J.L. Vickers, T.L. Weiland, and D. A. Willard, "Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4," Proc. SPIE 5991, 59911R-1 (2005). [CrossRef]
  5. A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, "Laser-induced damage in deuterated potassium dihydrogen phosphate," Appl. Opt. 42, 5483-5495 (2003). [CrossRef] [PubMed]
  6. R. A. Negres, P. DeMange, and S. G. Demos, "Investigation of laser annealing parameters for optimal laserdamage performance in deuterated potassium dihydrogen phosphate," Opt. Lett. 30, 2766-2768 (2005). [CrossRef] [PubMed]
  7. M. Pommies, D. Damiani, B. Bertussi, J. Capoulade, H. Piombini, J.Y. Natoli, and H. Mathis, "Detection and characterization of absorption heterogeneities in KH2PO4 crystals," Opt. Commun. 267, 154-161 (2006). [CrossRef]
  8. J. E. Davis, R. S. Hughes, and H. W. Lee., "Investigation of optically generated transient electronic defects and protonic transport in hydrogen-bonded molecular solids. Isomorphs of potassium dihydrogen phosphate," Chem. Phys. Lett. 207, 540-545 (1993). [CrossRef]
  9. C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, "Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion," J. Opt. Soc. Am. B 11, 774-785 (1994). [CrossRef]
  10. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, "Electron or hole-assisted reactions of H defects in hydrogen-bonded KDP," Phys. Rev. Lett. 91, 015505 (2005). [CrossRef]
  11. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, "Electronic structure calculations of an oxygen vacancy in KH2PO4," Phys. Rev. B 72, 134110 (2005). [CrossRef]
  12. K. Wang, C. Fang, J. Zhang, C. S. Liu, R. I. Boughton, S. Wang, and X. Zhao, "First-principles study of interstitial oxygen in potassium dihydrogen phosphate crystals," Phys. Rev. B 72, 184105 (2005). [CrossRef]
  13. N. Y. Garces, K. T. Stevens, L. E. Halliburton, S. G. Demos, H. B. Radousky, and N. P. Zaitseva, "Identification of electron and hole traps in KH2PO4 crystals," J. Appl. Phys. 89, 47-52 (2001). [CrossRef]
  14. M. M. Chirila, N. Y. Garces, L. E. Halliburton, S. G. Demos, T. A. Land, and H. B. Radousky, "Production and thermal decay of radiation-induced point defects in KDPO crystals," J. Appl. Phys 94, 6456-6462 (2003). [CrossRef]
  15. M. D. Feit and A. M. Rubenchik, "Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning," Proc. SPIE 5273, 74-82 (2004). [CrossRef]
  16. J. J. De Yoreo and B. W. Woods, "A study of residual stress and the stress-optic effect in mixed crystals of K(DxH1−x)2PO4," J. Appl. Phys. 73, 7780-7789 (1993). [CrossRef]
  17. G. Duchateau and A. Dyan, "Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses," Opt. Express 15, 4557-4576 (2007). [CrossRef] [PubMed]
  18. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses," Phys. Rev. Lett. 74, 2248-2251 (1995). [CrossRef] [PubMed]
  19. L. Lamaignére, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Sci. Instrum. 78, 103105 (2007). [CrossRef] [PubMed]
  20. P. DeMange, R. A. Negres, C. W. Carr, H. B. Radousky, and S. G. Demos, "Laser-induced defect reactions governing damage initiation in DKDP crystals," Opt. Express 14, 5313-5328 (2006). [CrossRef] [PubMed]
  21. P. Grua, J-P. Morreeuw, and H. Bercegol, "Progress in the understanding of fracture related damage of fused silica," Proc. SPIE 6720, 672003 (2007). [CrossRef]
  22. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, "Laser annealing characteristics of multiple bulk defect populations within DKDP crystals," J. Appl. Phys. 104, 103103 (2008). [CrossRef]
  23. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky, and J. J. De Yoreo, "Investigation of optically active defect clusters in KH2PO4 under laser photoexcitation," J. Appl. Phys. 85, 3988-3992 (1999). [CrossRef]
  24. S. G. Demos, M. Staggs, J. J. De Yoreo, and H. B. Radousky, "Imaging of laser-induced reactions of individual defect nanoclusters," Opt. Lett. 26, 1975-1977 (2001). [CrossRef]
  25. H. S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959).
  26. A. Dyan, F. Enguehard, S. Lallich, H. Piombini, and G. Duchateau, "Scaling laws in laser-induced potassium dihydrogen phosphate crystal damage by nanosecond pulses at 3ω," J. Opt. Soc. Am. B 25, 1087-1095 (2008). [CrossRef]
  27. J. J. Adams, T. L. Weiland, J. R. Stanley, W. D. Sell, R. L. Luthi, J. L. Vickers, C. W. Carr, M. D. Feit, A. M. Rubenchik, M. L. Spaeth, and R. P. Hackel, "Pulse length dependence of laser conditioning and bulk damage in KD2PO4," Proc. SPIE 5647, 265 (2005). [CrossRef]
  28. M. J. Matthews and M. D. Feit, "Effect of random clustering on surface damage density estimates," Proc. SPIE 6720, 67201J (2007). [CrossRef]
  29. By performing calculations considering the liquefaction as phase transition and only considering the volume expansion due to this phase transition, a minimum of 100 times the crack thickness is required to fill it, i.e. a length of a few hundreds of nanometers. Calculations show that with such a length, its value depends on the fluence but not on the pulse duration. since this fact differs from the experimental observations, the liquefaction should be turn down.
  30. T. J. Norman, J. M. Zaug, and C. W. Carr, "High-Pressure Decomposition of DKDP," Chem. Mater. 18, 3074-3077 (2006). [CrossRef]
  31. Y. Kobayashi, S. Endo, K. Koto, T. Kikegawa, and O. Shimomura, "Phase transitions and amorphization of KH2PO4 at high pressure," Phys. Rev. B 51, 9302-9305 (1995). [CrossRef]
  32. If several ADNS contribute to the determination of d, e.g. n, then d transforms into d/n in our calculations.
  33. The variation of the gain with respect to τcond can be increased by setting the modeling parameters to values differing from the ones used.
  34. S. Xu, X. Yuan, W. Yin, X. Xiang, and X. Zu, "Effect of UV laser conditioning on fused silica in vacuum," Opt. Mater. 31, 1013-1016 (2009). [CrossRef]
  35. J. Y. Natoli, B. Bertussi, and M. Commandré, "Effect of multiple laser irradiations on silica at 1064 and 355 nm," Opt. Lett. 30, 1315-1317 (2005). [CrossRef] [PubMed]
  36. L. Gallais, J. Y. Natoli, and C. Amra, "Statistical study of single and multiple pulse laser-induced damage in glasses," Opt. Express 10, 1465-1474 (2002). [PubMed]
  37. C. W. Carr, H. B. Radousky, and S. G. Demos, "Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms," Phys. Rev. Lett. 91, 127402 (2003). [CrossRef] [PubMed]
  38. N. Bloembergen, "Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics," Appl. Opt. 12, 661-664 (1973). [CrossRef] [PubMed]
  39. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 18, 2607-2616 (2001). [CrossRef]
  40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  41. The equivalent distance of about 100 nm corresponding to the mean distance between two ADNS with nadns =100 and n = 10000, which represent standard values in our calculations.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited