OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10514–10521

45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects

Fengtao Wang, Fuhan Liu, and Ali Adibi  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10514-10521 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce here a simple method of integrating 45° total internal reflection micro-mirrors with polymer optical waveguides by an improved tilted beam photolithography on printed circuit boards to provide surface normal light coupling between waveguides and optoelectronic devices for optical interconnects. De-ionized water is used to couple ultraviolet beam through the waveguide core polymer layer at 45° angle during the photo exposure process. This technique is compatible with PCB manufacturing facility and suitable to large panel board-level manufacturing. The mirror slope is controlled accurately (within ± 1°) with high repeatability. The insertion loss of an uncoated micro-mirror is measured to be 1.6 dB.

© 2009 OSA

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(130.3120) Integrated optics : Integrated optics devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: April 20, 2009
Revised Manuscript: May 27, 2009
Manuscript Accepted: May 29, 2009
Published: June 8, 2009

Fengtao Wang, Fuhan Liu, and Ali Adibi, "45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects," Opt. Express 17, 10514-10521 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: A technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (2006).
  2. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984). [CrossRef]
  3. M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109(3–4), 239–245 (1994). [CrossRef]
  4. J. T. Kim, B. C. Kim, M. Jeong, and M. Lee, “Fabrication of a micro-optical coupling structure by laser ablation,” J. Mater. Process. Technol. 146(2), 163–166 (2004). [CrossRef]
  5. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12(5), 1032–1044 (2006). [CrossRef]
  6. N. Herdrickx, J. V. Erps, G. V. Steenberge, H. Thienpont, and P. V. Daele, “Laser ablated micromirrors for printed circuit board integrated optical interconnections,” IEEE Photon. Technol. Lett. 19(11), 822–824 (2007). [CrossRef]
  7. S. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. Steier, and L. Dalton, ““Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35(8), 1146–1155 (1999). [CrossRef]
  8. S. Lehmacher and A. Neyer, “Integration of polymer optical waveguides into printed circuit boards,” Electron. Lett. 36(12), 1052–1053 (2000). [CrossRef]
  9. L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005). [CrossRef]
  10. M. Kagami, A. Kawasaki, and H. Ito, “A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections,” J. Lightwave Technol. 19(12), 1949–1955 (2001). [CrossRef]
  11. A. L. Glebov, J. Roman, M. G. Lee, and K. Yokouchi, “Optical interconnect modules with fully integrated reflector mirrors,” IEEE Photon. Technol. Lett. 17(7), 1540–1542 (2005). [CrossRef]
  12. S. Han, I. Cho, S. Hwang, W. Lee, and S. Ahn, “A high-density two-dimensional parallel optical interconnection module,” IEEE Photon. Technol. Lett. 17(11), 2448–2450 (2005). [CrossRef]
  13. N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded micromirror inserts for optical printed circuit boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008). [CrossRef]
  14. M. Moyniham, B. Sicard, and T. Ho, “etc., “Progress toward board-level Optical Interconnect technology,” Proc. SPIE 5731, 50–62 (2005). [CrossRef]
  15. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical z-connections,” J. Lightwave Technol. 24(11), 4345–4352 (2006). [CrossRef]
  16. K. Y. Hung, H. T. Hu, and F. G. Tseng, “A novel fabrication technology for smooth 3D inclined polymer microstructures with adjustable angles,” Proceedings of the International Conference on Solid Sate Sensors, Actuators and Microsystems, USA, 821–824 (2003).
  17. F. Wang, F. Liu, A. Adibi, and R. Tummala, “A Simple Method to Fabricate 45° Polymer Micro-Mirrors for Three-Dimensional Board-Level Optical Interconnects”, The 90th OSA Annual meeting, Laser Science XXI, Optical Society of America, 8–12 (2006).
  18. F. Wang, F. Liu, G. K. Chang, and A. Adibi, “Precision Measurements for Propagation Properties of High Definition Polymer Waveguides by Imaging of Scattered Light,” Opt. Eng. 47(2), 024602 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited