OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10542–10563

Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides

Marcelo Davanço and Kartik Srinivasan  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10542-10563 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique based on using optical fiber taper waveguides for probing single emitters embedded in thin dielectric membranes is assessed through numerical simulations. For an appropriate membrane geometry, photoluminescence collection efficiencies in excess of 10 % are predicted, exceeding the efficiency of standard free-space collection by an order of magnitude. Our results indicate that these fiber taper waveguides offer excellent prospects for performing efficient spectroscopy of single emitters embedded in thin films, such as a single self-assembled quantum dot in a semiconductor membrane.

© 2009 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: April 17, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: June 3, 2009
Published: June 9, 2009

Marcelo I. Davanco and Kartik Srinivasan, "Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides," Opt. Express 17, 10542-10563 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Gerardot, S. Seidl, P. Dalgarno, R. Warburton, M. Kroner, K. Karrai, A. Badolato, and P. Petroff, "Contrast in transmission spectroscopy of a single quantum dot," Appl. Phys. Lett. 90, 221 106 (2007). [CrossRef]
  2. A. N. Vamivakas, M. Atature, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, and M. S. Unlu, "Strong Extinction of a Far-Field Laser Beam by a Single Quantum Dot," Nano Lett. 7, 2892-2896 (2007). [CrossRef] [PubMed]
  3. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, "Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence," Nat. Phys. 4, 60-66 (2008). [CrossRef]
  4. I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar, "Strong Extinction of a Laser Beam by a Single Molecule," Phys. Rev. Lett. 98, 033 601 (2007). [CrossRef]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, "Observation of Strong Coupling between One Atom and a Monolithic Microresonator," Nature 443, 671-674 (2006). [CrossRef] [PubMed]
  6. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdiskquantum dot system," Nature 450, 862-865 (2007). [CrossRef] [PubMed]
  7. K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, "Investigations of a coherently driven semiconductor optical cavity QED system," Phys. Rev. A 78, 033 839 (2008). [CrossRef]
  8. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032 509 (2005).
  9. V. V. Klimov and M. Ducloy, "Spontaneous emission rate of an excited atom placed near a nanofiber," Phys. Rev. A 69, 013 812 (2004). [CrossRef]
  10. K. Nayak, P. Melentiev, M. Morinaga, F. Le Kien, V. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescences," Opt. Express 15, 5431-5438 (2007). [CrossRef] [PubMed]
  11. K. Srinivasan, O. Painter, A. Stintz, and S. Krishna, "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic," Appl. Phys. Lett. 91, 091 102 (2007). [CrossRef]
  12. A. Muller, E. B. Flagg, P. Bianucci, X. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, "Resonance Fluorescence from a Coherently Driven Semiconductor Quantum Dot in a Cavity," Phys. Rev. Lett. 99, 187 402 (2007). [CrossRef]
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  14. C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, "Optical properties of single InAs quantum dots in close proximity to surfaces," Appl. Phys. Lett. 85, 3423-3425 (2004). [CrossRef]
  15. W.-P. Huang, "Coupled-mode theory for optical waveguides: and overview," J. Opt. Soc. Am. A 11, 963-983 (1994). [CrossRef]
  16. Lumerical FDTD Solutions. Specific software packages are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by NIST, nor does it imply that the software identified is necessarily the best available for the purpose.
  17. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd edn.
  18. H. Benisty, R. Stanley, and M. Mayer, "Method of source terms for dipole emission modification in modes of arbitrary planar structures," J. Opt. Soc. Am. A 15, 1192-1201 (1998). [CrossRef]
  19. H. Rigneault and S. Monneret, "Modal analysis of spontaneous emission in a planar microcavity," Phys. Rev. A 54, 2356-2368 (1996). [CrossRef] [PubMed]
  20. H. P. Urbach and G. L. J. A. Rikken, "Spontaneous emission from a dielectric slab," Phys. Rev. A 57, 3913-3930 (1998). [CrossRef]
  21. C. P. Michael, M. Borselli, T. J. Johnson, and O. Painter, "An optical fiber taper probe for wafer-scale microphotonic device characterization," Opt. Express 15, 4745-4752 (2007). [CrossRef] [PubMed]
  22. P. Jayavel, H. Tanaka, T. Kita, O. Wada, H. Ebe, M. Sugawara, J. Tatebayashi, Y. Arakawa, Y. Nakat, and T. Akiyama, "Control of optical polarization anisotropy in edge emitting luminescence of InAs/GaAs selfassemble quantum dots," Appl. Phys. Lett. 84 (2004). [CrossRef]
  23. T. Søndergaard and B. Tromborg, "General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier," Phys. Rev. A 64, 033 812 (2001). [CrossRef]
  24. Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B 16, 465-474 (1999). [CrossRef]
  25. Comsol Multiphysics. Specific software packages are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by NIST, nor does it imply that the software identified is necessarily the best available for the purpose.
  26. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  27. M. Davanco and K. Srinivasan, "Optical fiber taper waveguides for highly efficient spectroscopy of single emitters deposited on a dielectric slab," Manuscript in preparation (2009).
  28. S. Koseki, B. Zhang, K. D. Greve, and Y. Yamamoto, "Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides," Appl. Phys. Lett. 94, 051 110 (2009). [CrossRef]
  29. M. Davanco and K. Srinivasan, "Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole," preprint: arxiv.org/abs/0905.2994 (2009).
  30. C. W. Gardiner and M. J. Collett, "Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation," Phys. Rev. A 31, 3761-3774 (1985). [CrossRef] [PubMed]
  31. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley Interscience, New York, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited