OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10564–10572

Fresnel-Gaussian shape invariant for optical ray tracing

Moisés Cywiak, A. Morales, J. M. Flores, and Manuel Servín  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10564-10572 (2009)
http://dx.doi.org/10.1364/OE.17.010564


View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a technique for ray tracing, based in the propagation of a Gaussian shape invariant under the Fresnel diffraction integral. The technique uses two driving independent terms to direct the ray and is based on the fact that at any arbitrary distance, the center of the propagated Gaussian beam corresponds to the geometrical projection of the center of the incident beam. We present computer simulations as examples of the use of the technique consisting in the calculation of rays through lenses and optical media where the index of refraction varies as a function of position.

© 2009 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1510) Geometric optics : Propagation methods
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

History
Original Manuscript: February 4, 2009
Revised Manuscript: April 13, 2009
Manuscript Accepted: April 16, 2009
Published: June 9, 2009

Citation
Moisés Cywiak, A. Morales, J. M. Flores, and Manuel Servín, "Fresnel-Gaussian shape invariant for optical ray tracing," Opt. Express 17, 10564-10572 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. N. Mahajan, Optical Imaging and Aberrations Part I Ray Geometrical Optics, (SPIE Press USA, 1998).
  2. M. Herzberger, Modern Geometrical Optics, (Interscience Publishers, Inc. N.Y., 1958).
  3. O. N. Stavroudis, "Simpler derivation of the formulas for generalized ray tracing," J. Opt. Soc. Am. 66, 1330-1333 (1976). [CrossRef]
  4. G. H. Spencer and M. V. R. K. Murty, "General ray-tracing procedure," J. Opt. Soc. Am. 52, 672-678 (1962). [CrossRef]
  5. O. N. Stavroudis, The Optics of Rays,Wavefronts, and Caustics, (Academic Press, Inc. N.Y., 1972).
  6. A. Sharma, D. V. Kumar and A. K. Ghatak, "Tracing rays through graded-index media: a new method," App. Opt.,  21, 984-987 (1982). [CrossRef]
  7. S. Nolte, M. Will, J. Burghoff, and A. Tünerman, "Ultrafast laser processing: new options for three-dimensional photonic structures," J. Mod. Opt. 51, 2533-2542 (2004). [CrossRef]
  8. S. Szatmári and G. Kühnle, "Pulse front and pulse duration distortion in refractive optics, and its compensation," Opt. Commun. 69, 60-65 (1988). [CrossRef]
  9. U. Fuchs, U. D. Zeitner, and A. Tűnnermann, "Ultra-short pulse propagation in complex optical systems," Opt. Express 13, 3852-3861 (2005). [CrossRef] [PubMed]
  10. A. Rohani, A. A. Shishegar and S. Safavi-Naeini, "A fast Gaussian beam tracing method for reflection and refraction of general vectorial astigmatic Gaussian beams from general curved surfaces," Opt. Commun. 232, 1-10 (2004). [CrossRef]
  11. J. J. Stamnes, Waves in Focal Regions, (IOP Publishing Limited, 1986).
  12. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).
  13. K. Iizuka, Engineering Optics, (Springer Verlag, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited