OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10606–10611

Long-range surface plasmon-polariton waveguide sensors with a Bragg grating in the asymmetric double-electrode structure

Yang Hyun Joo, Seok Ho Song, and Robert Magnusson  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10606-10611 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a Bragg grating resonance sensor based on long-range surface plasmon-polaritons (LRSPP) excited on an asymmetric double-electrode waveguide structure. The proposed LRSPP waveguide sensor utilizes spectral resonance of the asymmetric double-electrode structure by adding a Bragg grating layer on the top surface of the metal slab. We have numerically estimated the bulk index resolution and thickness detection limit of a target biomolecule layer under 30 dB total propagation loss. The sub-μm fluidic channel between the two metal layers always experiences a highly confined LRSPP mode excited by end-fire coupling with optical fibers, therefore the proposed LRSPP sensor platform can be applied to a variety of integrated sensor-chip scenarios.

© 2009 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: May 11, 2009
Revised Manuscript: June 3, 2009
Manuscript Accepted: June 3, 2009
Published: June 9, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Yang Hyun Joo, Seok Ho Song, and Robert Magnusson, "Long-range surface plasmon-polariton waveguide sensors with a Bragg grating
in the asymmetric double-electrode structure," Opt. Express 17, 10606-10611 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef] [PubMed]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008). [CrossRef]
  4. Website, http://www.biacore.com/lifesciences/index.html .
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  7. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  8. M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005). [CrossRef] [PubMed]
  9. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26(13), 1980–1985 (2008). [CrossRef]
  10. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001). [CrossRef]
  11. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007). [CrossRef] [PubMed]
  12. Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008). [CrossRef]
  13. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  14. We used a commercial FEM tool of FEMLABTM 3.1 (now, MULTIPHYSICSTM), COMSOL, Inc.
  15. C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989). [CrossRef]
  16. P. Yeh, Optical waves in layered Media (Wiley and Sons, New York, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited