OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10718–10724

Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10718-10724 (2009)
http://dx.doi.org/10.1364/OE.17.010718


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have analyzed the multi-mode interference effect depending on the wavelength and the polarization states of input beam in a multi-mode Ti:LiNbO3 waveguide at about 1300 nm region. The transmitted optical signal of a Ti:LiNbO3 waveguide shows the periodic oscillation as a function of input wavelength. The measured average periodicity of the oscillation in TM and TE polarization beams were about 18 nm and 48 nm, respectively. Actually, the periodicity is determined by the refractive index difference between the two modes (fundamental and first modes). Therefore, we have explained the experimental results with the theoretical calculations which are derived from a quasi-analytical technique based on the effective-refractive-index method and the equation of coupling length determined by the mode phase factor in the multi-mode waveguide.

© 2009 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.0230) Optical devices : Optical devices
(230.7380) Optical devices : Waveguides, channeled
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 20, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 3, 2009
Published: June 11, 2009

Citation
Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, "Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide," Opt. Express 17, 10718-10724 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Alferness, "Guided-Wave Devices for Optical Communication," IEEE J. Quantum Electron. QE- 17, 946-959 (1981). [CrossRef]
  2. T. Suhara, and H. Ishizuki, "Integrated QPM Sum-Frequency Generation Interferometer Device for Ultrafast Optical Switching," IEEE Photon. Technol. Lett. 13, 1203-1205 (2001). [CrossRef]
  3. Y. L. Lee, C. Jung, Y.-C. Noh, I. W. Choi, D.-K. Ko, J. Lee, H. Y. Lee, and H. Suche, "Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide," Opt. Express 12, 701-707 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-701. [CrossRef] [PubMed]
  4. R. Noe, D. Sandel, S Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, C. Glingener, A. Schoepflin, A. Faerbert, and G. Fischer, "Integrated optical LiNbO3 distributed polarization mode dispersion compensator in 20 Gbit/s transmission system," Electron. Lett. 35, pp. 652-654 (1999). [CrossRef]
  5. Y. L. Lee, C. Jung, Y. Noh, M. Park, C. Byeon, D. Ko, and J. Lee, "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649-2655 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-12-2649. [CrossRef] [PubMed]
  6. Y. L. Lee, B. Yu, T. J. Eom, W. Shin, C. Jung, Y. Noh, J. Lee, D. Ko, and K. Oh, "All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide," Opt. Express 14, 2776-2782 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2776. [CrossRef] [PubMed]
  7. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T. J. Eom, and J. Lee, "Waveguide-type wavelength-tunable Solc filter in a periodically poled Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 19, 1505-1507 (2007). [CrossRef]
  8. M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, "High-power blue generation from a periodically poled," Appl. Phys. Lett. 83, 3659-3661 (2003). [CrossRef]
  9. L. B. Soldano and E. C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  10. C.-H. Bae and F. Koyama, "Design and Fabrication of Multi-Mode Interference Hollow Waveguide Optical Switch with Variable Air Core," Jpn. J. Appl. Phys. 45, 6648-6653 (2006). [CrossRef]
  11. A. Irace and G. Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express 11, 2807-2812 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2807. [CrossRef] [PubMed]
  12. M. R. Layton and J. A. Bucaro, "Optical fiber acoustic sensor utilizing mode-mode interference," Appl. Opt. 18, 666-670 (1979). [CrossRef] [PubMed]
  13. A. Mehta, W. Mohammed, and E. G. Johnson, "Multimode interference based fiber-optic displacement sensor," IEEE Photon. Technol. Lett. 15, 1129-1131 (2003). [CrossRef]
  14. M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor Space Switches Based on Multimode Interference Couplers," J. Lightwave Technol. 20, 1-8 (2002). [CrossRef]
  15. Y. L. Sam and Y. H. Won, "1x3 Wavelength demultiplexer based on multimode interference with an index-modulation region,’" Microwave Opt. Technol. Lett. 43, 400-403 (2004). [CrossRef]
  16. L. O. Lierstuen and A. Sudbo, "8-Channel wavelength division multiplexer based on multimode interference couplers," IEEE Photon. Technol. Lett. 7, 1034-1036 (1995). [CrossRef]
  17. Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, "Temperature insensitive dual comb filter based on multi-mode interference Ti:LiNbO3 waveguide," IEEE Photon. Technol. Lett. 21, 507-509 (2009). [CrossRef]
  18. E. Strake, G. P. Bava, and I. Montrosset, "Guided Modes of Ti:LiNbO3 Channel Waveguides: A Novel Quasi-Analytical Technique in Comparision with the Scalar Finite-Element Method," J. Lightwave Technol. 6, 1126-1135 (1988). [CrossRef]
  19. M. Bachmann. P. A. Besse, and H. Melchior, "General self-imaging properties in NXN multimode interference couplers including phase relations," Appl. Opt. 33, 3905-3911 (1994). [CrossRef] [PubMed]
  20. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, and W. Sohler, "Efficient cascaded difference frequency conversion in periodicall poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
  21. R. Regener and W. Sohler, " Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985). [CrossRef]
  22. V. Mule’, R. Villalaz, T. K. Gaylord, and J. D. Meindl, "Photopolymer-Based Diffractive and MMI Waveguide Couplers," IEEE Photon. Technol. Lett. 16, 2490-2492 (2004). [CrossRef]
  23. D.-Y. Liu, Y. Li, Y.-P. Dou, H.-C. Guo, H. Yang, Q.-H. Gong, "Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses," Chin. Phys. Lett. 25, 2500-2003 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (947 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited