OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10731–10737

A reflective microring notch filter and sensor

Haishan Sun, Antao Chen, and Larry R. Dalton  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10731-10737 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new design of wavelength selective reflector composed of a Y junction and a singly coupled microring resonator, and demonstrate its biochemical sensing applications with a prototype device. In contrast with other reflectors like distributed Bragg reflectors, this device acts as notch filter at its reflection port. One promising application of the device is for remote sensing of harsh or inaccessible site, where only one optical fiber is required to transmit the input and reflected light signal over a long distance. The design can also be used to make microring cavity lasers.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4555) Optical devices : Coupled resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: April 17, 2009
Revised Manuscript: May 30, 2009
Manuscript Accepted: May 30, 2009
Published: June 11, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Haishan Sun, Antao Chen, and Larry R. Dalton, "A reflective microring notch filter and sensor," Opt. Express 17, 10731-10737 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997). [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  3. G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17(2), 390–392 (2005). [CrossRef]
  4. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004). [CrossRef]
  5. B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett. 23(20), 1570–1572 (1998). [CrossRef]
  6. Y. Chung, D.-G. Kim, and N. Dagli, “Widely tunable coupled-ring reflector laser diode,” IEEE Photon. Technol. Lett. 17(9), 1773–1775 (2005). [CrossRef]
  7. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995). [CrossRef]
  8. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  9. C.-Y. Chao and L. J. Guo, “Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators,” Appl. Phys. Lett. 84(14), 2479–2481 (2004). [CrossRef]
  10. D. R. Lide, “Concentrative Properties of Aqueous Solutions,” in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008) (CRC Press/Taylorand Francis, Boca Raton, FL., 2007), pp. 2640–2640.
  11. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  12. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]
  13. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De, “Guided-Wave Optical Biosensors,” Sensors 7(4), 508–536 (2007). [CrossRef]
  14. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007). [CrossRef]
  15. I. Kiyat, C. Kocabas, and A. Aydinli, “Integrated micro ring resonator displacement sensor for scanning probe microscopies,” J. Micromech. Microeng. 14(3), 374–381 (2004). [CrossRef]
  16. B. Bhola, H.-C. Song, H. Tazawa, and W. H. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005). [CrossRef]
  17. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14(15), 6705–6712 (2006). [CrossRef] [PubMed]
  18. A. W. Fang, B. R. Koch, K.-G. Gan, H. Park, R. Jones, O. Cohen, M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack mode-locked silicon evanescent laser,” Opt. Express 16(2), 1393–1398 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited