OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10774–10781

High-precision open-loop adaptive optics system based on LC-SLM

Chao Li, Mingliang Xia, Quanquan Mu, Baoguang Jiang, Li Xuan, and Zhaoliang Cao  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10774-10781 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Used as a wavefront corrector, a liquid crystal spatial modulator (LC-SLM) has good repeatability and linearity, which are essential for open-loop adaptive optics, and the open-loop optical system can increase the light energy efficiency by a factor of two for the LC-SLM and improve the system bandwidth. In order to test the performance of the LC-SLM in open-loop correction, an indoor closed-loop configuration optical system is constructed on the open-loop control method. With this method, it is demonstrated that the residual error after open-loop correction could be smaller than 0.08λ (RMS: root mean square value) if the initial wavefront aberration is below 2.5λ (RMS), and the repeatability error of open-loop correction is smaller than 0.01λ (RMS).

© 2009 Optical Society of America

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Adaptive Optics

Original Manuscript: December 23, 2008
Revised Manuscript: March 22, 2009
Manuscript Accepted: March 24, 2009
Published: June 12, 2009

Chao Li, Mingliang Xia, Quanqun Mu, Baoguang Jiang, Li Xuan, and Zhaoliang Cao, "High-precision open-loop adaptive optics system based on LC-SLM," Opt. Express 17, 10774-10781 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953). [CrossRef]
  2. J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993). [CrossRef]
  3. D. T. Gavel, "Adaptive optics control strategies for extremely large telescopes," Proc. SPIE 4494, 215-220 (2002). [CrossRef]
  4. J. B. Stewart, A. Dour, Y. Zhou, and T. G. Bifano, "Open-loop control of MEMS deformable mirror for large-amplitude wavefront control," J. Opt. Soc. Am. A 24, 3827-3832 (2007). [CrossRef]
  5. C. R. Vogel and Q. Yang, "Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformbale mirror," J. Opt. Soc. Am. A 23, 1074-1082 (2006). [CrossRef]
  6. N. Konforti, E. Marom, and S. T. Wu, "Phase-only modulation with twisted nematic liquid crystal spatial light modulation," Opt. Lett. 13, 251-254 (1988). [CrossRef] [PubMed]
  7. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001 (2006). [CrossRef]
  8. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006). [CrossRef] [PubMed]
  9. S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003). [CrossRef]
  10. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023 (2002). [CrossRef] [PubMed]
  11. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997). [CrossRef]
  12. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007). [CrossRef] [PubMed]
  13. D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).
  14. Q. Mu, Z. Cao, C. Li, B. Jiang, L. Hu, and L. Xuan, "Accommodation-based liquid crystal adaptive optics system for large ocular aberration correction," Opt. Lett. 33, 2898-2900 (2008). [CrossRef] [PubMed]
  15. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002). [PubMed]
  16. Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, "Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope," Opt. Express 17, 2530-2537 (2009). [CrossRef] [PubMed]
  17. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited