OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10976–10989

Implementation of quantum state tomography for time-bin entangled photon pairs

Hiroki Takesue and Yuita Noguchi  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 10976-10989 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum state tomography (QST) is an important method for evaluating the quality of entangled photon pairs, and has been widely used to measure polarization entanglement. However, QST has not been applied to time-bin entanglement, which is a type of entanglement suitable for fiber transmission. In this paper, we clarify the way to implement QST on time-bin entangled photon pairs using a 1-bit delayed interferometer. We also provide experimental results for a demonstration of QST for time-bin entangled photon pairs generated using spontaneous four-wave mixing in a dispersion shifted fiber.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: May 7, 2009
Revised Manuscript: June 15, 2009
Manuscript Accepted: June 15, 2009
Published: June 16, 2009

Hiroki Takesue and Yuita Noguchi, "Implementation of quantum state tomography for time-bin entangled photon pairs," Opt. Express 17, 10976-10989 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities," Phys. Rev. Lett. 49, 91-94 (1982). [CrossRef]
  2. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993). [CrossRef] [PubMed]
  3. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef]
  4. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, "Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses," Phys. Rev. A 66, 033816 (2002) [CrossRef]
  5. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, "Generation of ultraviolet entangled photons in a semiconductor," Nature 431, 167-170 (2004). [CrossRef] [PubMed]
  6. N. A. Peters, J. B. Altepeter, D. Branning, E. R. Jeffrey, T.-C. Wei, and P. G. Kwiat, "Maximally entangled mixed states: creation and concentration," Phys. Rev. Lett. 92, 133601 (2004). [CrossRef] [PubMed]
  7. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, A. J. Shields, "A semiconductor source of triggered entangled photon pairs," Nature 439, 179-182 (2006) [CrossRef] [PubMed]
  8. S. Odate, A. Yoshizawa, H. Tsuchida, "Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration," Electron. Lett. 43, 1376-1377 (2007). [CrossRef]
  9. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999). [CrossRef]
  10. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  11. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006). [CrossRef] [PubMed]
  12. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007). [CrossRef] [PubMed]
  13. J. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Ultra-long distance and efficient entanglement distribution over 200 km," submitted to Opt. Express.
  14. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, "Long-distance entanglementbased quantum key distribution over optical fiber," Opt. Express 16, 19118-19126 (2008). [CrossRef]
  15. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-&μυ;m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293-295 (2005). [CrossRef] [PubMed]
  16. G. Berlin, G. Brassard, F. Bussieres, N. Godbout, J. A. Slater, W. Tittel, "Flipping quantum coins," arXiv:0904.3946.
  17. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002). [CrossRef]
  18. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
  19. H. Takesue and K. Inoue,"Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005). [CrossRef]
  20. N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Express 14, 10043-10049 (2006). [CrossRef] [PubMed]
  21. B. Miquel and H. Takesue, "Observation of 1.5 μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photoidodes," New J. Phys. 11, 045006 (2009). [CrossRef]
  22. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005). [CrossRef] [PubMed]
  23. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett. 79, 705-707 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited