OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10998–11006

Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles

Michinori Honma, Toshiaki Nose, Satoshi Yanase, Rumiko Yamaguchi, and Susumu Sato  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10998-11006 (2009)
http://dx.doi.org/10.1364/OE.17.010998


View Full Text Article

Enhanced HTML    Acrobat PDF (4047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior.

© 2009 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 22, 2009
Revised Manuscript: June 7, 2009
Manuscript Accepted: June 8, 2009
Published: June 17, 2009

Citation
Michinori Honma, Toshiaki Nose, Satoshi Yanase, Rumiko Yamaguchi, and Susumu Sato, "Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles," Opt. Express 17, 10998-11006 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33(14), 2775–2784 (1994). [CrossRef] [PubMed]
  2. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33(14), 2804–2811 (1994). [CrossRef] [PubMed]
  3. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  4. Y. Hori, K. Asai, and M. Fukai, “Field-controllable liquid-crystal phase grating,” IEEE Trans. Electron. Dev. 26(11), 1734–1737 (1979). [CrossRef]
  5. M. Honma and T. Nose, “Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors,” Appl. Opt. 43(27), 5193–5197 (2004). [CrossRef] [PubMed]
  6. S. Ohtaki, N. Murao, M. Ogasawara, and M. Iwasaki, “The application of a liquid crystal panel for the 15 Gbyte optical disk system,” Jpn. J. Appl. Phys. 38(Part 1, No. 3BPart 1, No. 3B), 1744–1749 (1999). [CrossRef]
  7. T. Nose and S. Sato, “Liquid-crystal microlens with a non-uniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989). [CrossRef]
  8. M. Honma, K. Hirata, and T. Nose, “Influence of frictional conditions of microrubbing on pretilt angle of homeotropic liquid crystal cells,” Appl. Phys. Lett. 88(3), 033513 (2006). [CrossRef]
  9. S. Yanase, M. Kawamura, R. Yamaguchi, T. Takahashi, and S. Sato, “Optical phase-control devices using liquid crystal molecular orientation density,” Proc. SPIE 5936, 593614 (2005). [CrossRef]
  10. N. Smith, P. Gass, M. Tillin, C Raptis, and D Burbridge, “Micropatterned Alignment of Liquid Crystals,” Sharp Technical Journal 24, 5–10 (2005).
  11. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, S.-D. Lee, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, “ “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88(20), 203505 (2006). [CrossRef]
  12. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt. 41(7), 1246–1250 (2002). [CrossRef] [PubMed]
  13. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  15. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]
  16. M. Honma and T. Nose, “Friction as the fundamental factor controlling the pretilt angle of homeotropic liquid crystal cells: A microrubbing investigation,” J. Appl. Phys. 101(10), 104903 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited