OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 11013–11025

Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator

Enrique J. Fernández, Pedro M. Prieto, and Pablo Artal  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 11013-11025 (2009)
http://dx.doi.org/10.1364/OE.17.011013


View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.

© 2009 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Adaptive Optics

History
Original Manuscript: April 23, 2009
Revised Manuscript: June 4, 2009
Manuscript Accepted: June 13, 2009
Published: June 17, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Enrique J. Fernández, Pedro M. Prieto, and Pablo Artal, "Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator," Opt. Express 17, 11013-11025 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-11013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Dou and M. K. Giles, "Closed-loop adaptive optics system with a liquid crystal television as a phase retarder," Opt. Lett. 20, 1583-1585 (1995). [CrossRef] [PubMed]
  2. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997). [CrossRef] [PubMed]
  3. J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997). [CrossRef]
  4. D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338. [CrossRef] [PubMed]
  5. F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998). [CrossRef]
  6. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998). [CrossRef]
  7. S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2. [CrossRef] [PubMed]
  8. D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, "Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction," Appl. Opt. 40, 2345-2355 (2001). [CrossRef]
  9. S. Kotova, M. Kvashnin, M. Rakhmatulin, O. Zayakin, I. Guralnik, N. Klimov, P. Clark, G. Love, A. Naumov, C. Saunter, M. Loktev, G. Vdovin, and L. Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-22-1258. [PubMed]
  10. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059. [CrossRef] [PubMed]
  11. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6403. [CrossRef] [PubMed]
  12. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001-128005 (2006). [CrossRef]
  13. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287. [CrossRef] [PubMed]
  14. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995). [CrossRef]
  15. L. Zhu, P-C. Sun, and Y. Fainman, "Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror," Appl. Opt. 38, 5350-5354 (1999). [CrossRef]
  16. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000). [CrossRef]
  17. C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-6-9-175. [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002). [CrossRef]
  19. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1056. [CrossRef] [PubMed]
  20. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4275. [CrossRef] [PubMed]
  21. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900. [CrossRef] [PubMed]
  22. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007). [CrossRef] [PubMed]
  23. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654. [CrossRef] [PubMed]
  24. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics," Appl. Opt. 37, 5579-5589 (1998). [CrossRef]
  25. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1508. [PubMed]
  26. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  27. F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  28. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).
  29. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4. [CrossRef]
  30. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005). [CrossRef]
  31. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004). [CrossRef]
  32. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177. [CrossRef] [PubMed]
  33. V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007). [CrossRef]
  34. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1946. [CrossRef] [PubMed]
  35. D. Miller, L. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-275. [CrossRef] [PubMed]
  36. W. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11, 2053-2059 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-2053. [CrossRef] [PubMed]
  37. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, "Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications," Opt. Express 14, 3065-3072 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-3065. [CrossRef] [PubMed]
  38. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004). [CrossRef]
  39. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8013. [CrossRef] [PubMed]
  40. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, "Correction of horizontal turbulence with nematic liquid crystal wavefront corrector," Opt. Express 16, 7006-7013 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-7006. [CrossRef] [PubMed]
  41. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Open-loop correction of horizontal turbulence: system design and result," Appl. Opt. 47, 4297-4301 (2008). [CrossRef] [PubMed]
  42. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  43. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005). [CrossRef]
  44. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  45. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  46. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  47. P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  48. J. W. Goodman, Introduction to Fourier optics, 3rd Edition, (Roberts and Company, Publishers, Englewood, CO, 2005).
  49. P. Artal, "Calculations of the 2-dimensional foveal retinal images in real eyes," J. Opt. Soc. Am. A 7, 1374-1381 (1990). [CrossRef] [PubMed]
  50. R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991). [CrossRef]
  51. E. N. Kirsanova and M. G. Sadovsky, "Entropy approach in the analysis of anisotropy of digital images," Open Syst. Inf. Dyn. 9, 239-250 (2002). [CrossRef]
  52. P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).
  53. S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007). [CrossRef]
  54. J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006). [CrossRef] [PubMed]
  55. P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited