OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 11045–11056

Ultrafast all-optical modulation in silicon-based nanoplasmonic devices

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van  »View Author Affiliations

Optics Express, Vol. 17, Issue 13, pp. 11045-11056 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A five-layer silicon-based nanoplasmonic waveguiding structure is proposed for ultrafast all-optical modulation and switching applications. Ultrafast nonlinear phase and amplitude modulation is achieved via photo-generated free carrier dynamics in ion-implanted silicon using above-bandgap femtosecond pump pulses. Both an analytical model and rigorous numerical simulations of the structures have shown that a switching time of 5ps and an on-off contrast of 35dB can be achieved in these devices.

© 2009 OSA

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(320.0320) Ultrafast optics : Ultrafast optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 20, 2009
Revised Manuscript: June 11, 2009
Manuscript Accepted: June 12, 2009
Published: June 17, 2009

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, "Ultrafast all-optical modulation in silicon-based nanoplasmonic devices," Opt. Express 17, 11045-11056 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, eds, Springer Series in Optical Sciences, Vol. 131 (Springer, 2007).
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008). [CrossRef] [PubMed]
  4. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007). [CrossRef]
  5. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006). [CrossRef]
  7. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004). [CrossRef]
  8. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008). [CrossRef]
  9. K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007). [CrossRef] [PubMed]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  11. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991). [CrossRef]
  12. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992). [CrossRef]
  13. A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19(12), 898–900 (1994). [CrossRef] [PubMed]
  14. S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990). [CrossRef]
  15. Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995). [CrossRef]
  16. L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993). [CrossRef]
  17. K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991). [CrossRef]
  18. M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989). [CrossRef]
  19. A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995). [CrossRef]
  20. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987). [CrossRef]
  21. P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited